

INERTIAL FUSION ENERGY SUMMARY

D. E. HINKEL LAWRENCE LIVERMORE NATIONAL LABORATORY LIVERMORE, CA USA

The prospect of inertial fusion energy derives from scientific advancements in different arenas

The National Ignition Facility (NIF) provides the opportunity for ignition physics research at full scale

Synergy between different IFE scenarios drives progress in ignition science: energy coupling and drive

Synergy between different IFE scenarios drives progress in ignition science: implosion and burn

Summary

Direct-drive ICF research has made significant progress since the 2010 IAEA meeting – R.L. McCrory IFE 1-2

ρ**R/**ρ**R** (1-D)

- Polar drive will allow for direct-drive ignition experiments on the National Ignition Facility (NIF) with the x-ray-drive beam configuration
- OMEGA symmetric direct-drive cryogenic target implosions are defining the PD design space for the NIF
- Performance continues to improve:
 - neutron yields exceeding 10¹³ (up to ~40% of clean 1-D simulations)
 - ion temperature increased from 2.2 to 3 keV
 - $P\tau$ increased from 1.7 to 2.6 atm-s
- Initial polar-drive implosions have been performed on the NIF

TC10136

Fast Ignition at ILE: yield and Tion have exceeded previous records, with a path for further improvement

The U.S. fast ignition (FI) team has made significant progress on detailed FI physics study with new platforms at the Omega laser facility

M.S. Wei et al., IFE/P6-06

- Measured highest density (pr~0.3g/cm²) in FI cone-in-shell implosion, consistent with rad-hydro DRACO modeling results
- First-time imaging of energy flow into imploded cone-guided FI targets

vas investigated using hemispherical en and enclosed cone geometries

Advances in drivers and technology are crucial to IFE

IFE/P6-16, Kwan

Reactor Chamber Protection

- Mitigate chamber damage due to ions, neutrons and cyclic stresses:
 - -- liquid walls
 - -- "materials on demand", designed at nanoscale with sufficient mechanical strength and radiation resistance
 - -- improved rapid change-out techniques

NIF, with its power/energy capability, and its precision, is truly a premier facility for future ignition physics studies

Indirect Drive Laser Coupling: NIF plans to field a variety of targets to explore coupling improvements

Improve Inner Beam Propagation

 Reduces amount of required cross-beam energy transfer

Change geometry:

-- Rugby Hohlraum: more headroom over capsule for same wall area

Change hohlraum fill: -- higher-Z fill (gas, foam, ...) to increase Te Reduce SRS/hot electrons

- Stimulated Raman Scatter (SRS): laser scatters off self-generated electron plasma waves; hot electron production
- Stimulated Brillouin Scatter (SBS): laser scatters off self-generated ion acoustic waves
- Hard x-ray images of capsule: no evidence of hot electron coupling
- SBS-only target:
 -- fill composition
- Increase Te

•

New diagnostics to research energy coupling

Plasma characterization via Thomson scatter

Proton Deflectometry

IFE/P6-10, Li

Further characterization of crossed-beam energy transfer

Indirect Drive Symmetry: NIF plans to field backlighter diagnostics

Neutron data suggests low mode asymmetry

Images of Neutron Source and high-density shell

Hohlraum Drive AsymmetryAblator/Ice Iow modes

Low Mode Asymmetry in Simulations

Simulations: 2% low mode asymmetry [P = (1,2,3)]

 Simulations begin to match observables Present images capture hotspot self-emission only

Simulated X-Ray Image

Backlit experiments to measure cold fuel shape have begun

OV/1-4, Moses

Frenje, IFE/1-1

<u>Mix</u>: NIF will explore lower convergence, higher stability implosions

Data: sharp performance boundary due to mix

High Mode Asymmetry: surface roughness, dust, ...

- <u>Mitigate by</u>:
 - -- "dust-less" capsules
 - -- higher adiabat implosion

There has been significant progress in sculpting the building blocks for IFE

THE END

D. E. HINKEL LAWRENCE LIVERMORE NATIONAL LABORATORY LIVERMORE, CA USA

IAEA Fusion Energy Conference 2012