High Power Heating of Magnetic Reconnection for High-Beta ST Formation in TS-3 and UTST ST Merging Experiments

Y. Ono, H. Tanabe, Y. Kamino, K. Yamasaki, K. Kadowaki, Y. Hayashi, T. Yamada, C. Z. Cheng Univ. Tokyo, Japan, National Cheng Kung Univ. Tw.

Magnetic reconnection of two merging toroidal plasmas B field lines and j_t measured by 2-D magnetic probe array.

ST Merging for Reconnection Heating

2D T_i Doppler Measurement System

Significant ion heating of no-guide field reconnection (Merging of two toroidal plasma with opposing B_t)

First 2-D T_i measurement of reconnection **Clear evidence of ion heating by outflow!**

Energy Flow during Reconnection

Smaller reconnecting B field than that of counterhelicity merging.

Plasmoid Ejection increases rec. speed and T_i.

Comparison with Troyon Scaling Merging Formation of Ultra-High ß ST with $\beta_N < 20$ A: 2nd stable B: unstable C: 1st stable D: unstable **Reconnection** Time < Growth Time of Instabilities

B_{//}²-scaling for ion heating of reconnection

Summary and Conclusions

- Reconnection outflow heats ions by fast shock in two downstream regions where T_i peaks.
- Electron heating occurs inside current sheet and T_e peaks at X-point.
- 3) Ion heating power >> Electron heating power
- 4) Ion heating energy and T_i increase with $B_{//}^2$.
- 5) The high-power rec. heating forms high-ß ST with absolute minimum B profile.
 - Reconnection heating power in MAST is much higher (> keV) than TS-3 and 4 due to its higher reconnecting field $B_{//}$ and better energy confinement.
 - Direct ion heating by rec. is a promising method for heating ions > 10keV for fusion plasmas.