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 Magnetic reconnection of two merging toroidal plasmas 
 B field lines and jt measured by 2-D magnetic probe array. 
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ST Merging for Reconnection Heating 

● Why, Where and How much 	
 reconnection heats ions and electrons?	
       2D Ti and Te measurements	
     Outflow heating of Ti in downstream	
     Ohmic heating of Te in current sheet	

       1D Ti, Vi probe, Mach probe array	
     Fast shock in the downsteam	

Scaling of rec. heating   Tie>1keV in MAST rec. exp. 	

●Merging formation of abs. min-B profile	
 Fast formation of ST with ß>0.3 in 2nd-stability	
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First 2-D Ti measurement of reconnection 
Clear evidence of ion heating by outflow!	
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At down-stream,  
hot Ti spot,  steep 
increase in ne and 
dumping of ion 
flow appear, 
indicating fast 
shock formation . 
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2D profiles of 
reconnection inflow 

and outflow 
 fast shock?
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Significant ion heating in downstream and  
localized electron heating inside the current sheet.   

 High power heating suppresses paramag. Bt, increasing plasma beta. 
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Energy Flow during Reconnection 

Outflow Energy	
 Current Sheet Heating	


€ 

E • J∫ dV∫ dt

Small electron heating >> 

Magnetic Energy Dissipation ≈ 145J	


Increment of Ion thermal Energy ≈ 128J	


≈ 13J	

Large ion heating 

Smaller reconnecting B field  than that of counterhelicity merging. �
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1) Rec. rate and ΔTi    
   decrease with Bt  
   before plasmoid ejection. 
2) Rec. rate and ΔTi  
   increase significantly 
   after plasmoid ejection. 
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Plasmoid Ejection increases rec. speed and Ti. 

Compression	


(b) Slow inflow reconnection	
(a) Fast inflow reconnection	
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    Formation of Absolute Min.-B 
   The rec. heating transforms paramagnectic      
 merging STs to diamag. ST with abs min-B. 	  



TS-3, 4 �
   Comparison with     
    Troyon Scaling 
     Merging Formation 
  of Ultra-High ß ST 
  with ßN<20 
  A: 2nd stable  
  B: unstable 
  C: 1st stable  
  D: unstable 
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 < Growth Time of    
               Instabilities 



B//
2-scaling for ion heating of reconnection 

ITER Regime	


Δ	
W	
m	
/W	
m	
=1%	


Δ	
W	
 /W	
 ~100%	
m	
m	


high Bt  rec.  (tokamak plasma)	

     low Bt  rec. (spheromak) 	


zero Bt rec. (counter) 	


MAST (R~.9m)�

ITER Regime	


TS-4 (R~.5m)�



MAST �

Rec. startup CS startup 
MAST-TS Collaboration 
M. Gryaznevich, R. Scannel  

The reconnection start-
up heats ions and 
electrons much higher 
than the conventional 
CS startup.	  

Rec. startup CS startup 
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MAST �Y. Ono et al. to be published in PPCF �
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Summary and Conclusions	

1)  Reconnection outflow heats ions by fast shock in 

two downstream regions where Ti peaks. 
2)  Electron heating occurs inside current sheet and 

Te  peaks at X-point. 
3)  Ion heating power >> Electron heating power 
4)  Ion heating energy and Ti increase with B//

2. 
5)  The high-power rec. heating forms high-ß ST 

with absolute minimum B profile. 
Reconnection heating power in MAST is much higher   
(> keV) than TS-3 and 4 due to its higher reconnecting 
field B// and better energy confinement. 
Direct ion heating by rec. is a promising method for 
heating ions > 10keV for fusion plasmas. 


