Control and Dissipation of Runaway Electron Beams Created During Rapid Shutdown Experiments in DIII-D

by E. Hollmann¹

with

M.E. Austin², J.A. Boedo¹, N.H. Brooks³, N. Commaux⁴, N.W. Eidietis³, T.E. Evans³, D.A. Humphreys³, V.A. Izzo¹, A.N. James⁵, T.C. Jernigan⁴, A. Loarte⁶, J. Martin-Solis⁷, R.A. Moyer¹, J. Muñoz⁸, P.B. Parks³, D.L. Rudakov¹, E.J. Strait³, C. Tsui⁹, M.A. Van Zeeland³, J.C. Wesley³, and J. Yu¹

¹UCSD, ²UT Austin, ³GA, ⁴ORNL, ⁵LLNL, ⁶ITER, ⁷U Carlos III, ⁸ORU, ⁹U of Toronto

Presented at 2012 IAEA Fusion Energy Conference San Diego, California

October 8-13, 2012

Main Points

- RE plateau will probably form after many ITER disruptions.
- Feedback control of RE plateau position and current achieved in DIII-D
- May not always be possible in ITER?
- Rapid dissipation of RE plateau achieved with massive high-Z gas injection
- May be useful technique in ITER
- Damage to ITER wall from RE beam may be less than expected
- No conversion of magnetic to kinetic energy if RE beam moves into wall quickly enough

2

Motivation: Disruption Runaway Electrons Pose Serious Threat to ITER Wall Tiles

(courtesy of G. Martin)

- Disruption REs occasionally cause wall damage in present tokamaks
- In ITER, problem will be more serious:
- Larger plasma current large avalanche
- Activated walls continuous RE seed
- Thin Be walls possible damage to joints

4

NATIONAL FUSION FACILIT

NATIONAL FUSION FACILI

Thermal quench (TQ) - RE seed formation

Current quench (CQ) (prompt RE loss and RE avalanche)

RE plateau (equilibrium with RE-dominated current)

DIII-D Ar pellet rapid shutdown time sequence

6

Thermal quench (TQ) - RE seed formation

Current quench (CQ) (prompt RE loss and RE avalanche)

RE plateau (equilibrium with RE-dominated current)

RE final loss (phase most dangerous for wall)

DIII-D Ar pellet rapid shutdown time sequence

7

DIII-D Experiments Aim at Understanding and/or Minimizing Runaway Electrons in Different Phases

Thermal quench (TQ) - RE seed formation

Hollmann/IAEA/Oct2012

8

RE Plateau Will Probably Form in Many ITER Disruptions

- Avalanche theory predicts REs suppressed at density n_{crit}
- Only reached 20% n_{crit} in DIII-D rapid shutdown experiments
- Outlook is similar for ITER
- Reaching n_{crit} in ITER would give vessel force problems!
- Large scatter in amount of REs formed
- Makes predicting RE seed in ITER challenging
- Large RE avalanche in ITER means RE plateau likely

Experiments Toward Controlled Dissipation of RE Plateau

Thermal quench (TQ) - RE seed formation

Current quench (CQ) (prompt RE loss and RE avalanche)

RE plateau (equilibrium with RE-dominated current)

RE final loss (phase most dangerous for wall)

Feedback Control of RE Plateau Position and Current has been Achieved in DIII-D

- Control system modifications have enabled position control of RE plateau
- RE current has been held steady to flux limit or ramped down to 0
- Probably not possible in ITER?
- Power supply voltage limitations
- REs in ITER probably subject to slow vertical instability
- Can REs in ITER be dissipated in time before striking wall?

(from N. Eidietis, APS 2011)

11

Dissipation of RE Plateau Current by Massive High-Z Gas Injection Has Been Achieved in DIII-D

- High-Z MGI fired into RE plateau shows enhanced dissipation of RE current
- Ramp down of RE current nearly to 0 achieved with RE plateau created by Ar MGI
- Motivates study of RE plateau structure, injected particle assimilation, and current dissipation

Hot Electrons Form Narrow Beam Inside Dense Cold Electrons

Tomographic inversions of RE plateau hot and cold electron densities

- Make use of vertical instability to get profile data
- Soft x-ray emission structure shows REs dominantly in narrow (a < 0.2 m) beam
- Magnetic flux surface inversions give reasonable estimate of RE beam position
- Interferometers show that cold electrons fill much of vacuum chamber

RE Beam Current Forms Narrow Beam

14

Neutrals Largely Excluded From RE Beam

- Neutral distribution important for comparing observed RE current dissipation with theory
- Can estimate neutral distribution from line brightness profiles
- Center of RE beam found to contain mostly ions, not neutrals
- Dominant ions in RE beam are D⁺, Ar⁺ (5%–20%), and C⁺ (1%)

Inversions of neutral atom profiles

Assimilation of Impurities Injected Into RE Plateau Low But Predictable

- Measure initial ion/neutral temperature ratio T_{ratio} ~ 0.5 with line Doppler broadening
- Assimilation of additional gas injected into RE plateau consistent with nT = constant
- Low assimilation of low-Z injected gas suggests lower T_{ratio}
- Low radiation efficiency of low-Z gas allows core ions to heat up?

Assimilation of impurities injected into RE plateau

Current Decay of RE Plateau Faster Than Expected From Electron-electron Collision Drag

- Avalanche theory (electron-electron collisions) predicts current decay rate $I^{-1}dI/dt = v_R \sim (E E_{crit})$
- E estimated from magnetic reconstructions, E_{crit} from ion composition
- Vary E with ohmic coil ramps, vary E_{crit} with impurity injection
- Anomalous additional decay of about 10–20/s seen in data
- Lower anomalous additional decay following massive low-Z injection
 - Suggests anomalous decay is due to high-Z ions in beam

RE Energy Distribution Function in Presence of Ar Supports Enhanced Scattering of REs

- Perp and para bremsstrahlung and synchrotron emission measurements combined to give RE energy spectrum
- Fits depend on RE pitch angle θ for higher energies ε > 1 MeV
- Typically find $\theta \sim 0.2$
- Find distribution function more skewed to low energies than expected from avalanche theory (Putvinski, Nucl. Fusion 1994)
- Suggests extra drag on REs not included in avalanche theory
- Pitch angle scattering off high-Z ions?

Increasing Anomalous Loss as RE Beam Moves Closer to Wall Suggests Transport Loss of REs

- If ohmic feedback is turned off, RE channel current decays and drifts into center post
- Shrinking beam increases internal *E*-field
- Decreased coupling between hot and cold populations as RE beam heats!
- Increasing power balance deficit consistent with RE loss to wall
- Increasing anomalous loss rate consistent with increased RE loss to wall

Understanding RE Final Loss

Thermal quench (TQ) - RE seed formation

Current quench (CQ) (prompt RE loss and RE avalanche)

RE plateau (equilibrium with RE-dominated current)

RE final loss (phase most dangerous for wall)

RE Current Partially Transferred to Ohmic Current and Wall Current During Final Loss

- RE beam energy mostly magnetic
- But kinetic energy causes melting damage!
- Conversion of RE magnetic energy to kinetic energy concern for ITER
- 40% of W_{mag} assumed to convert to W_{kin} [Loarte, Nucl. Fusion (2011)]
- In DIII-D, significant RE current appears to go into ohmic current
- ... and into wall current

21

Transfer of RE current into ohmic current during final strike

Shots With Rapid Final Loss Release Less Kinetic Energy into Wall, Consistent With Lower W_{mag} Conversion

Summary: DIII-D Experiments are Helping ITER Develop Plan to Avoid Disruption RE Damage

- RE plateau will probably form frequently following ITER disruptions
- Expect slow vertical loss of RE beam
- Rapid dissipation of uncontrolled RE beam with massive high-Z gas injection promising
- Assimilation is low but sufficient to cause rapid dissipation of RE current
- Good progress in understanding assimilation and dissipation; can be extrapolated to ITER?
- Damage to ITER wall from RE beam may be less than expected
- Present 2 MA upper bound assumes 40% W_{mag} conversion
- May be lower in ITER, depending on RE final loss timescale?

(Backup slides)

Line emission mostly from cold electrons

- Line brightness match gives effective temperature ~ 1.5 eV in core and ~ 0.8 eV in edge.
- Rough agreement with Doppler temperatures of core ions (1.6 eV) and edge neutrals (1.2 eV).
- Indicates line emission mostly from cold electrons (not from hot REs).

Effective temperature profile from line brightnesses

C⁺ temperature fit

D temperature fit

Neutral beam pulses demonstrate that line emission comes from cold electrons

- Neutral beams heat ions which are expected to be well-coupled to cold electrons (but not hot REs).
- See increase in ion line brightnesses during neutral beam pulses.
- Consistent with cold electrons in core heating and causing increased line emission.

Magnetic energy transfer in different RE-wall final strikes

Fast electron pitch angle increases at lower energies

RE ECE spectrum

Fits to synchrotron continuum give energies of ~40 MeV for highest-energy REs

- Synchrotron continuum brightness depends on RE energy and pitch.
- Peaks in IR, only comes into visible for energies > 35 MeV.
- Comparison of forward vs backward spectra confirms that continuum only exists in forward-beamed direction.
- Pitch angle $\theta \sim 0.1 0.2$ estimated from shape of RE synchrotron spot.

RE beam shrinks and heats during motion into center post

- Shrinking beam (major and minor radii) increases internal loop voltage.
- Increased RE energy seen in increased synchrotron emission.

Appearance of visible synchrotron continuum as RE beam moves to center post.

DIII-D rapid shutdowns already reaching min allowable ITER-equivalent CQ duration

Hollmann/IAEA/Oct2012

Scaled CQ duration in DIII-D rapid shutdowns

- CQ duration/plasma area gives rough machineindependent CQ duration.
- DIII-D rapid shutdowns only at 20% of n_{crit} in mid-CQ but already at/below min allowable ITER-equivalent CQ duration.
- Increasing injection rate/quantity will push below min allowable ITER-equivalent CQ duration!

RE final loss shows toroidal asymmetry

(A. James, NF 2011)

31

Many rapid shutdown methods studied in DIII-D

- massive gas injection (MGI)...
- shattered pellets (SPI)
- large shell pellets
- Work well for TQ and halo current mitigation.
- Only reach 20% of theoretical mid-CQ critical density n_{crit} needed for collisional RE suppression.

Images of He MGI shutdown

Images of shattered D₂ pellet shutdown

250

Outlook for ITER : collisional suppression of REs during CQ will be very challenging

RE beam current dominantly found inside a < 0.3 m

- Beam current channel position can be estimated from external magnetic signals.
- Loss of RE current greatly accelerated when beam moves within 0.3 m of wall.
- Accelerated loss over wide range of a/I_p - not MHD instability!
- Indicates transport loss of a ~
 0.3 m of RE beam current channel.
- Consistent with current dominantly carried by REs.

Radius at which final RE loss begins

RE beam current dominantly found inside a < 0.3 m

- Beam current channel position can be estimated from external magnetic signals.
- Final loss onset begins at some small minor radius a_{final} ~ 0.3 m.
- Consistent SXR beam radius, indicates current carried by REs.
- Small increase RE beam radius with RE current?
 - Not known what sets RE beam radius.

