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Main Points

• RE plateau will probably form after many ITER disruptions.

• Feedback control of RE plateau position and current achieved
in DIII-D

– May not always be possible in ITER?

• Rapid dissipation of RE plateau achieved with massive high-Z gas
injection

– May be useful technique in ITER

• Damage to ITER wall from RE beam may be less than expected
– No conversion of magnetic to kinetic energy if RE beam moves

into wall quickly enough
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Motivation: Disruption Runaway Electrons Pose
Serious Threat to ITER Wall Tiles

• Disruption REs occasionally cause wall
damage in present tokamaks

• In ITER, problem will be more serious:

– Larger plasma current — large avalanche
– Activated walls — continuous RE seed
– Thin Be walls — possible damage to joints

(courtesy of G. Martin)

RE tile damage on JET

REs could melt Cu/Be braze joint!

[Simulation from
V. Sizyuk, Nucl.
Fusion (2009)]

ITER cooling channel
geometry
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091-10/EMH/jy

DIII-D Ar pellet rapid shutdown
time sequence

Time Evolution of Runaway Electrons During
Rapid Shutdown

Thermal quench (TQ) - RE
seed formation
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DIII-D Ar pellet rapid shutdown
time sequence

Time Evolution of Runaway Electrons During
Rapid Shutdown

Thermal quench (TQ) - RE
seed formation

Current quench (CQ)
(prompt RE loss and RE
avalanche)
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Time Evolution of Runaway Electrons During
Rapid Shutdown

DIII-D Ar pellet rapid shutdown
time sequence

Thermal quench (TQ) - RE
seed formation

Current quench (CQ)
(prompt RE loss and RE
avalanche)

RE plateau (equilibrium with
RE-dominated current)
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Thermal quench (TQ) - RE
seed formation

Current quench (CQ)
(prompt RE loss and RE
avalanche)

RE plateau (equilibrium with
RE-dominated current)

RE final loss (phase most
dangerous for wall)

Time Evolution of Runaway Electrons During
Rapid Shutdown

DIII-D Ar pellet rapid shutdown
time sequence
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DIII-D Experiments Aim at Understanding and/or
Minimizing Runaway Electrons in Different Phases

Plateau Final lossCQTQ

Thermal quench (TQ) - RE
seed formation

Current quench (CQ)
(prompt RE loss and RE
avalanche)

RE plateau (equilibrium with
RE-dominated current)

RE final loss (phase most
dangerous for wall)

Main focus of this talk
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RE Plateau Will Probably Form
in Many ITER Disruptions

Total electron density/critical density

• Avalanche theory predicts REs
suppressed at density ncrit

– Only reached 20% ncrit in DIII-D
rapid shutdown experiments

– Outlook is similar for ITER
– Reaching ncrit in ITER would give

vessel force problems!

• Large scatter in amount of REs
formed

– Makes predicting RE seed in ITER
challenging

– Large RE avalanche in ITER
means RE plateau likely

RE current at end of CQ
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Experiments Toward Controlled Dissipation
of RE Plateau

Plateau

Thermal quench (TQ) - RE
seed formation

Current quench (CQ)
(prompt RE loss and RE
avalanche)

RE plateau (equilibrium with
RE-dominated current)

RE final loss (phase most
dangerous for wall)



Hollmann/IAEA/Oct 2012
11 Hollmann/IAEA/Oct2012

Feedback Control of RE Plateau Position and Current
has been Achieved in DIII-D

• Control system modifications have
enabled position control of RE
plateau

• RE current has been held steady to
flux limit or ramped down to 0

–  Probably not possible in ITER?
–  Power supply voltage limitations

• REs in ITER probably subject to slow
vertical instability

– Can REs in ITER be dissipated in time
before striking wall?

RE current control with
ohmic coil

(from N. Eidietis, APS 2011)
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MGI into RE plateau

• High-Z MGI fired into RE plateau shows enhanced dissipation of
RE current

• Ramp down of RE current nearly to 0 achieved with RE plateau
created by Ar MGI

• Motivates study of RE plateau structure, injected particle
assimilation, and current dissipation

Dissipation of RE Plateau Current by Massive High-Z
Gas Injection Has Been Achieved in DIII-D

RE plateau created by Ar MGI
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Hot Electrons Form Narrow Beam Inside
Dense Cold Electrons

• Make use of vertical
instability to get profile data

• Soft x-ray emission structure
shows REs dominantly in
narrow (a < 0.2 m) beam

• Magnetic flux surface
inversions give reasonable
estimate of RE beam
position

• Interferometers show that
cold electrons fill much of
vacuum chamber

Tomographic inversions of RE plateau
hot and cold electron densities

Hot e-

Cold e-



Hollmann/IAEA/Oct 2012
14 Hollmann/IAEA/Oct2012

RE Beam Current Forms Narrow Beam

• Beam current channel position can be
estimated from external magnetic
signals

• Final loss onset begins at some small
minor radius afinal ~ 0.2–0.4 m

• Consistent SXR beam radius a ~ 0.2 m:
indicates current carried by REs, not
ohmic plasma

Estimating radius of RE
beam current channel
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Neutrals Largely Excluded From RE Beam

• Neutral distribution important for
comparing observed RE current
dissipation with theory

• Can estimate neutral distribution
from line brightness profiles

• Center of RE beam found to contain
mostly ions, not neutrals

• Dominant ions in RE beam are D+,
Ar+ (5%–20%), and C+ (1%)

Inversions of neutral
atom profiles
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Assimilation of Impurities Injected Into RE Plateau
Low But Predictable

Assimilation of impurities
injected into RE plateau• Measure initial ion/neutral

temperature ratio Tratio ~ 0.5
with line Doppler broadening

• Assimilation of additional
gas injected into RE
plateau consistent with
nT = constant

•  Low assimilation of low-Z
injected gas suggests lower
Tratio

– Low radiation efficiency of
low-Z gas allows core ions to
heat up?



Hollmann/IAEA/Oct 2012
17 Hollmann/IAEA/Oct2012

Current Decay of RE Plateau Faster Than
Expected From Electron-electron Collision Drag
• Avalanche theory (electron-electron collisions) predicts current decay rate

I-1dI/dt = νR ~ (E – Ecrit)

• E estimated from magnetic reconstructions, Ecrit from ion composition

• Vary E with ohmic coil ramps, vary Ecrit with impurity injection

• Anomalous additional decay of about 10–20/s seen in data

•  Lower anomalous additional decay following massive low-Z injection

– Suggests anomalous decay is due to high-Z ions in beam

RE current decay during ohmic ramp RE current decay during MGI
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RE energy spectrum

RE Energy Distribution Function in Presence of Ar
Supports Enhanced Scattering of REs

• Perp and para bremsstrahlung and
synchrotron emission measurements
combined to give RE energy
spectrum

• Fits depend on RE pitch angle θ for
higher energies ε > 1 MeV

–   Typically find θ ~ 0.2

• Find distribution function more
skewed to low energies than
expected from avalanche theory
(Putvinski, Nucl. Fusion 1994)

– Suggests extra drag on REs not
included in avalanche theory

– Pitch angle scattering off high-Z ions?
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Increasing Anomalous Loss as RE Beam Moves
Closer to Wall Suggests Transport Loss of REs

Power balance of RE beam
moving into wall

• If ohmic feedback is turned off,
RE channel current decays and
drifts into center post

• Shrinking beam increases
internal E-field

• Decreased coupling between
hot and cold populations as RE
beam heats!

• Increasing power balance deficit
consistent with RE loss to wall

• Increasing anomalous loss rate
consistent with increased RE
loss to wall

RE beam
position



Hollmann/IAEA/Oct 2012
20 Hollmann/IAEA/Oct2012

Understanding RE Final Loss

Final loss

Thermal quench (TQ) - RE
seed formation

Current quench (CQ)
(prompt RE loss and RE
avalanche)

RE plateau (equilibrium with
RE-dominated current)

RE final loss (phase most
dangerous for wall)
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RE Current Partially Transferred to Ohmic Current and
Wall Current During Final Loss

• RE beam energy mostly magnetic

– But kinetic energy causes melting
damage!

• Conversion of RE magnetic
energy to kinetic energy
concern for ITER

– 40% of Wmag assumed to
convert to Wkin [Loarte,
Nucl. Fusion (2011)]

• In DIII-D, significant RE current
appears to go into ohmic
current

• … and into wall current

Transfer of RE current into ohmic
current during final strike
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Shots With Rapid Final Loss Release Less Kinetic Energy
into Wall, Consistent With Lower Wmag Conversion

•  Shorter RE final loss gives:

– Large conversion of RE
current into ohmic plasma
current

– Larger conversion of RE current
into wall current

– Lower increase in kinetic energy
during final loss

– Possibly good news for ITER,
depending on RE loss time?

Magnetic energy transfer in
different RE-wall final strikes
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Summary: DIII-D Experiments are Helping ITER
Develop Plan to Avoid Disruption RE Damage

• RE plateau will probably form frequently following ITER disruptions

– Expect slow vertical loss of RE beam

• Rapid dissipation of uncontrolled RE beam with massive high-Z
gas injection promising

– Assimilation is low but sufficient to cause rapid dissipation of
RE current

– Good progress in understanding assimilation and dissipation;  can
be extrapolated to ITER?

•  Damage to ITER wall from RE beam may be less than expected

– Present 2 MA upper bound assumes 40% Wmag conversion
– May be lower in ITER, depending on RE final loss timescale?
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(Backup slides)
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C+ temperature fit

D temperature fit

Effective temperature profile from line brightnesses

Line emission mostly from cold electrons

• Line brightness match gives effective temperature ~1.5
eV in core and ~ 0.8 eV in edge.

• Rough agreement with Doppler temperatures of core
ions (1.6 eV) and edge neutrals (1.2 eV).

• Indicates line emission mostly from cold electrons (not
from hot REs).
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Neutral beam pulses demonstrate that line
emission comes from cold electrons

• Neutral beams heat ions which are
expected to be well-coupled to cold
electrons (but not hot REs).

• See increase in ion line
brightnesses during neutral beam
pulses.

• Consistent with cold electrons in
core heating and causing increased
line emission.

Magnetic energy transfer in
different RE-wall final strikes
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RE ECE spectrum

Fast electron pitch angle increases at lower energies

• Perp nonthermal electron
cyclotron emission extremely
sensitive to pitch angle.

• Fits to ECE microwave
spectrum indicate θ
increases toward isotropic for
ε < 100 keV



Hollmann/IAEA/Oct 2012
28 Hollmann/IAEA/Oct2012

Fits to synchrotron continuum give energies of
~40 MeV for highest-energy REs

• Synchrotron continuum brightness depends on RE energy and pitch.

• Peaks in IR, only comes into visible for energies > 35 MeV.

• Comparison of forward vs backward spectra confirms that continuum
only exists in forward-beamed direction.

• Pitch angle θ ~ 0.1 – 0.2 estimated from shape of RE synchrotron spot.

Fit to RE beam shape
giving θ = 0.17

Fit to synchrotron emission
giving ε = 37 MeV



Hollmann/IAEA/Oct 2012
29 Hollmann/IAEA/Oct2012

RE beam shrinks and heats during motion into
center post

• Shrinking beam (major and minor radii) increases internal loop
voltage.

• Increased RE energy seen in increased synchrotron emission.

Appearance of visible
synchrotron continuum
as RE beam moves to
center post.
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Scaled CQ duration in DIII-D rapid shutdowns

(J. Wesley, ITPA 2012)

DIII-D rapid shutdowns already reaching min
allowable ITER-equivalent CQ duration

• CQ duration/plasma area
gives rough machine-
independent CQ duration.

• DIII-D rapid shutdowns only
at 20% of ncrit in mid-CQ but
already at/below min
allowable ITER-equivalent CQ
duration.

• Increasing injection
rate/quantity will push below
min allowable ITER-equivalent
CQ duration!
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RE final loss shows toroidal asymmetry

( A. James, NF 2011)

HXR contours of RE-
wall strikes in DIII-D

• HXR contours show large
toroidal asymmetry during RE
final loss.

• Magnetics and SXR data
suggest large n=1 structure.
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Many rapid shutdown methods studied in DIII-D

Images of He MGI shutdown

Images of shattered D2 pellet shutdown

(from N. Commaux, NF 2010)

- massive gas injection (MGI)

- shattered pellets (SPI)

- large shell pellets

• Work well for TQ and halo
current mitigation.

• Only reach 20% of
theoretical mid-CQ critical
density ncrit needed for
collisional RE suppression.
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0-D simulations of rapid
shutdown of ITER

Outlook for ITER : collisional suppression of REs
during CQ will be very challenging

• Can reach ncrit with
instantaneous “ideal” deposition
of mass.

• But these cases cause
unacceptably fast CQ!

• Conclusion: rapid shutdown
important to study for ITER TQ
heat load mitigation, but cannot
be counted on for RE mitigation!



Hollmann/IAEA/Oct 2012
34 Hollmann/IAEA/Oct2012

RE beam current dominantly found inside a < 0.3 m

• Beam current channel position
can be estimated from external
magnetic signals.

• Loss of RE current greatly
accelerated when beam moves
within 0.3 m of wall.

    - Accelerated loss over wide
range of a/Ip - not MHD instability!

    - Indicates transport loss of a ~
0.3 m of RE beam current channel.

• Consistent with current
dominantly carried by REs.

Radius at which final RE loss begins

(from N. Eidietis, APS 2011)
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RE beam current dominantly found inside a < 0.3 m

• Beam current channel position can be
estimated from external magnetic
signals.

• Final loss onset begins at some small
minor radius afinal ~ 0.3 m.

• Consistent SXR beam radius, indicates
current carried by REs.

• Small increase RE beam radius with RE
current?

    - Not known what sets RE beam 
radius.

Final loss radius
vs RE current

Estimating final
loss radius


