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(i) The RFX-mod Reversed Field Pinch experiment

1. Toroidal axisymmetric configuration sustained mainly by internal current
2. Toroidal field reversed at the edge with safety factor q < 1 always below unity
3. RFX-mod: R =2 m, a=0.46 m
4. Data obtained at high current Ip ≥ 1.5 MA and edge parameter

ne = 1− 2× 1019m−3 Te = 20− 100 eV
5. RFP exhibits bifurcation from chaotic regimes to helical states (Escande et al. 2000;

Lorenzini et al. 2009)

6. Plasma moving from topology dominated by an (m,n) = (0,1) perturbation to a
(m,n) = (1,−7) helicity
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(ii) Experimental setup

I Edge density and temperature
measured through a Thermal
Helium Beam diagnostic
(Agostini, Scarin, et al. 2010)

I The same helium gas cloud
used for the Gas Puff Imaging
diagnostic which provide
information on fluctuations and
perpendicular flow

MAGNETIC  COILS

ELECTROSTATIC  PROBE

I Internal sensor of integrated
signals (ISIS) constitute by a
toroidal array of floating
potential measurements with 5
degree spatial resolution

I Through correlation
measurement the toroidal map
of the toroidal flow is computed

(iii) The helical angle

I Standard definition of the
toroidal flux for a single mode

ψ(r , θ, φ) = ψ0(r )+(m/nBφ+Bθ)αm,n(r ) sin u

I δA = αm,n(r )B
I u being the helical angle

defined as

um,n(t) = mθ − nφ + ϕmn(t)

I Maximum radial displacement
∆1,−7

r is in the direction of ∇ψ
(pink line) and by construction
at u = π/2

I At the edge at u ≈ 0 due to the
toroidal coupling with
(m,n) = (0,7) mode (Zanca
et al. 2004)

(iv) Helical Plasma wall interaction

I In Helically shaped plasma particle influx
as estimated from Hα exhibits an helical
deformation, seen as non-axysimmetric
oscillations (HFS/LFS out of phase)
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(b)

I The influx has a cos u
behavior as a function of u
(panel(a))

I Also Prad radiation exhibits
an helical deformation with
decreasing radiation around
u ≈ π panel (b))

(v) Pressure and pressure profile

I Density, Temperature and
Pressure and relative gradient
obtained through THB
diagnostic (Agostini, Scarin, et al.
2010)

I Pressure and entire profile
oscillate in time with higher
values around u ≈ 0

I Lp =
(
|∇pe|

pe

)−1
as a function of u

exhibits a minimum around
u ≈ 3π/2

I Similar information obtained
through Langmuir probe at
r/a = 1 with density and
temperature oscillating in phase
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(vi) Floating potential

I Floating potential toroidal spectra (panel (a)) reveals a peak at the mode of the
dominant perturbation

I Resolved as a function of u floating potential oscillations are negative around
u ≈ π/2. and positive around u ≈ 3π/2

I HFS and LFS signals as a function of u collapse into a single shape sinusoidal
pattern
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(vii) Plasma flow

I At the edge of RFP, B0 ' Bθ & q ' 0
I Toroidal map of toroidal flow at r/a = 1 reconstructed through correlation analysis

(panel (a))
I The Spectrum reveals a peak at the same helicity of dominant perturbation (panel(b))
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I The same information obtained
also in a different radial position
(see panel (a))

I HFS and LFS measurements of
the flow collapse in a single
sinusoidal shape (panel (b)) 0 π/2 π 3π/2 2π
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(viii) The radial electric field

I Diamagnetic contribution to the plasma flow at the edge of an RFP is negligible
(Spizzo et al. 2012).

I Radial electric Field may be consequently directly computed from plasma flow
I At the edge, radial electric field is constant on helical surface and helical ripple

on δEr appears with maximum close to the location of the X-point of the island
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(ix) Radial electric field in MH case: the MARFE in an RFP

I High density operation in RFPs dominated
by Multiple Helical (MH) regimes, with a
broad spectrum of MHD modes.

I The modes are phase and wall locked and
distortion may be described in a
(m,n) = (0,1) geometry

I Approaching n/nG ≈ 1 radiative collapse
due to appearance of localized poloidally
symmetric regions of enhanced radiation
(Puiatti et al. 2009; Spizzo et al. 2012)

I Particle coming from source (S) are
toroidally convected from both side towards
an accumulation point (A) corresponding to
the X-point of the (0,1) island
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(x) Comparing the topologies
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Low density n/nG  = 0.13
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 High density n/nG  = 0.79
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I Comparing two perturbations with
different helicity at different Greenwald
normalized density (i.e. Different
collisionality)

I Radial electric field at the edge responds
with a ripple consistent with the applied
helicity

I Phase relation with respect to the
perturbation different at different
collisionality

(xi) Helical modulation of turbulence properties
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I Turbulence properties modulated by helical deformation (Agostini, Scaggion, et al. 2012)

I Density fluctuations higher at u ≈ π at the minimum of ∆r

I Potential fluctuation exhibits opposite behavior: =⇒ reduction in the region of reduction of the flow
I Radial and perpendicular correlation lengths (proportional to blobs dimension) higher around u ≈ π/2
I Consistent picture of blobs generated at u ≈ 0 and convected in the region where they accumulates u ≈ π

Conclusion

I Plasma edge properties modulated by spontaneous helically deformed plasma
I Plasma wall interaction helically deformed and maximum at the maximum radial edge

displacement
I Plasma pressure and pressure profile modulated with reduction of Lp for helical angle

u ≈ 3π/2.
I Edge flow, resulting from ambipolar electric field is found constant on constant helical

surface

I Helical modulation of the radial electric field is found to follow helicity of the dominant
perturbation

I Phase relation between electric field ambipolar response and magnetic perturbation is
not constant at different n/nG
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