24th IAEA Fusion Energy Conference

Study on TAE-induced Fast-Ion Loss Process in LHD

K. Ogawa, M. Isobe, K. Toi, D. A. Spong¹, M. Osakabe, S. Yamamoto and LHD experiment group National Institute for Fusion Science ¹Oak Ridge National Laboratory

Contents

- Introduction
- Experimental setups
- Results of experiments
 - Change of the loss dependence on TAE amplitude
- Setups for orbit-following simulation
- Results of orbit-following simulation
 - Change of the loss dependence on TAE amplitude
- Summary

Introduction

- TAE induced fast-ion loss process has been widely studied in tokamaks and heliotron/stellarator devices to find a method to reduce the α particle loss in fusion device.
- In LHD, characteristics of transport and loss of fast ions due to TAE have been studied.
 - Little attention has been given to the change of dependence of fast-ion loss on TAE amplitude. It suggests the change of loss process.
- Previous work shows the loss process is changed from convective to diffusive with increase of TAE amplitude in axisymmetric plasma [1].
- This work is devoted for understanding of the loss character in 3D plasma.

Experimental setups

Effect of magnetic axis position on fast-ion orbits and TAE in LHD

- Small magnetic axis position at finite beta R_{mag}
 - Smaller deviation of fast-ion orbit from magnetic flux surface
 - Strong magnetic shear

-> Narrow TAE gap -> Narrow radial extent of TAE mode

- Large R_{mag}
 - Larger deviation of fast-ion orbit from magnetic flux surface
 - Weak magnetic shear
 - -> Wide TAE gap -> Wide radial extent of TAE mode

Scintillator-based lost-fast ion probe (SLIP)

- A set of apertures has a role in discriminating *E* and χ of detectable fast ions.
- Scintillation points give the information of *E* and χ of lost-fast ions.
- Photomultiplier (PMT) array : Each PMT views particular region of *E* and χ on the screen. The time response is high enough to observe TAE-induced fast-ion loss.

Experimental results

Typical discharge with TAE

- Experimental condition
 - Bt=0.6 T (CCW)
 - $< n_{\rm e} > ~ 1.2 \text{ x} 10^{19} \text{m}^{-3}$
 - *<β>~* 1.5 %
 - <β_{fast}>~0.7 %
 - v_{beam}/<v_A>~1.5

Instabilities observed with Mirnov coil

- − TAE (*m*~1/*n*=1)
 - Frequency ~70 kHz
 - Amplitude of magnetic fluctuation: ~0.5x10⁻⁴ T
 - Peak of eigenfunction : r/a~0.6[1]
- Bulk plasma pressure excites instability
 - Resistive interchange mode (mainly: *m*=1/*n*=1)
 - Frequency:~1 kHz
 - Peak of eigenfunction : r/a~0.9[2]

[1] K. Ogawa NF 2010 [2] F. Watanabe PFR 2007

Increase of fast-ion loss due to TAE

Frequency from 0.8 kHz to 1.2 kHz is excluded.

- Time traces of magnetic fluctuation on TAE frequency and $\Gamma_{\rm fast\ ion}$.
 - Increase of fast-ion flux having *E* of 50-180 keV and χ of 35-45° due to TAE is observed.
 - Fast-ion loss due to resistive interchange mode (RIM) is also observed on entire region of E and χ .
 - To focus on the TAE induced loss, effects of RIM on fast-ion loss are removed using numerical frequency band-stop filter.

Large (Small) TAE leads to (large) small increase of $\Gamma_{\text{fast ion}}$.

Dependence of fast-ion loss flux on TAE fluctuation amplitude

- Increment of lost-fast ion flux $\Delta \Gamma_{\text{fast ion}}$ as a function of magnetic fluctuation amplitude $b_{\theta TAE}$
 - $\Delta \Gamma_{\text{fast ion}}$ is normalized by fast-ion components created by co-NBs ($P_{\text{NBco}} \times \tau_{s}$).
- In case B, the dependence changes at b_{0TAE}/Bt of 7×10^{-5} .
 - In lower $b_{\theta TAE}/Bt$ region : $\Delta \Gamma_{fast ion}/(P_{NBco} \times \tau_s) \propto b_{\theta TAE}/Bt$
 - In higher $b_{\theta TAE}/Bt$ region : $\Delta \Gamma_{\text{fast ion}}/(P_{\text{NBco}} \times \tau_{\text{s}}) \propto (b_{\theta TAE}/Bt)^2$
- Cases A and C, no clear change of dependence is observed.
 - The change of dependence may appear in unexplored b_{0TAE} region.

Setups for orbit-following simulation including TAE fluctuation

Setups for orbit-following simulation

- Inside the plasma
 - Guiding center orbits of fast ions are followed by DELTA5D [2].
 - Including TAE fluctuation (detail is shown in next slide.)
 - Only applicable inside LCFS -> DELTA5D uses equilibrium reconstructed by VMEC2000 [3].
- Outside the plasma
 - Lorentz orbit of fast ion is followed.
 - The SLIP measures the *E* and χ of fast ions according to Larmor motion.
- [1] S. Murakami TFT 1995 [2] D. A. Spong BAPS 1999 [3] S. Hirshman JCP 1991

TAE fluctuation included in orbit-following simulation

- Fluctuation of the TAE is mostly perpendicular to the magnetic field line.
 - TAE is classified into shear Alfvén type.
- Fluctuation is modeled as $\delta B = \nabla \times (\alpha B)$

$$\alpha \propto \frac{m}{\omega_{TAE}} \phi(\psi) \sin(n\zeta - m\theta - \omega_{TAE}t)$$

- Eigenfunction ϕ is calculated with AE3D [1].
 - The profile of TAE agrees with that obtained in experiment [2].
- Frequency chirping down rate is
 20 kHz/ms.

Results of orbit-following simulation

Dependence of fast-ion loss flux on TAE fluctuation amplitude

- The *E* of lost-fast ion : 120-180 keV
 - cf. EXP: 50-180 keV
- The χ of lost-fast ion : 30-40°
 - cf. EXP: 35-45°

In case B

- The change of dependence is reproduced.
- The critical $b_{\theta TAE}/Bt$ is 3×10^{-5} .
- Same order as experiment : 7 × 10⁻⁵
- In case A
 - The dependence is similar to the experimentally observed dependence in low $b_{\theta TAE}/Bt$ regime.
 - The critical value of $b_{\theta TAE}/Bt$ is predicted in unexplored regions of experiments.

Orbits of fast ions with TAE fluctuation

- Small TAE : A fast ion near the confinement/loss boundary is lost immediately due to radial excursion by TAE (convective process).
- Large TAE : Orbit of a fast ion confined in the interior region is gradually expanded due to TAE -> Reaches LCFS (diffusive process).

Possible explanation of the phenomenon

- Small TAE: barely confined fast ions are lost -> convective process is dominant.
- b_{θTAE} increases -> orbits of fast ions existing interior region is expanded, then finally, lost from the plasma.
- Diffusive loss increases with $b_{\theta TAE}$ -> Exceed convective type loss.
- Plateau region of fast-ion loss flux in case A might be due to the change of the transport of barely confined fast ions.

Summary

- Characteristics of TAE-induced fast-ion loss process are studied in the wide parameter ranges of LHD using SLIP.
- Dependence of $\Delta \Gamma_{\text{fast ion}}$ on $b_{\theta TAE}$ changed at certain $b_{\theta TAE}$ in case B (R_{mag} =3.86 m).
 - Low $b_{\theta TAE}$ region : $\Delta \Gamma_{fast ion} / (P_{NBco} \times \tau_s) \propto b_{\theta TAE} / Bt$
 - High $b_{\theta TAE}$ region : $\Delta \Gamma_{fast ion} / (P_{NBco} \times \tau_s) \propto (b_{\theta TAE} / Bt)^2$
- To study the observed phenomenon in detail, simulation based on orbit-following models that incorporated magnetic TAE fluctuation is performed.
 - The simulation reproduces the change of fast-ion loss dependence on TAE fluctuation amplitude.
 - It suggests the change of loss process from convective to diffusive character as predicted in axisymmetric model.
- The observed change of fast-ion loss dependence on TAE fluctuation amplitude can be explained by the change of the dominant loss process.