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Introduction
• TAE induced fast-ion loss process has 

been widely studied in tokamaks and 
heliotron/stellarator devices to find a 
method to reduce the  particle loss in 
fusion device.

• In LHD, characteristics of transport and 
loss of fast ions due to TAE have been 
studied.
– Little attention has been given to the change 

of dependence of fast-ion loss on TAE 
amplitude. It suggests the change of loss 
process.

• Previous work shows the loss process 
is changed from convective to diffusive 
with increase of TAE amplitude in 
axisymmetric plasma [1].

• This work is devoted for understanding 
of the loss character in 3D plasma.
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Loss with convective type process [1]

Loss with diffusive type process [2]

[1] D. Sigmar PoFB 1992 [2] R. White PoF 1983 



Experimental setups
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Effect of magnetic axis position on
fast-ion orbits and TAE in LHD

• Small magnetic axis position at finite beta Rmag
– Smaller deviation of fast-ion orbit from magnetic flux surface
– Strong magnetic shear 

-> Narrow TAE gap -> Narrow radial extent of TAE mode
• Large Rmag

– Larger deviation of fast-ion orbit from magnetic flux surface
– Weak magnetic shear 

-> Wide TAE gap -> Wide radial extent of TAE mode 5

Bt=0.6 T
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Scintillator-based lost-fast ion probe (SLIP)

• A set of apertures has a role in discriminating E and  of detectable fast ions.
• Scintillation points give the information of E and  of lost-fast ions.
• Photomultiplier (PMT) array : Each PMT views particular region of E and  on 

the screen. The time response is high enough to observe TAE-induced fast-ion 
loss.

E: Energy of ion,  : Pitch angle

Model of scintillator head

SLIP in LHD

aperturePlasma

180

Bt (CW, CCW)
Bt = 0.4 T- 3.0 T

R/a = 3.9 m / 0.6 m

VNBinj ~ 180 keV
E




= acos(v///v)





Experimental results
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Typical discharge with TAE
• Experimental condition

– Bt=0.6 T (CCW)
– <ne> ~ 1.2 x1019m-3

– <>~ 1.5 %
– <fast>~0.7 %
– vbeam/<vA>~1.5

• Instabilities observed with Mirnov coil
– TAE (m~1/n=1)

• Frequency ~70 kHz
• Amplitude of magnetic fluctuation: 

~0.5x10-4 T
• Peak of eigenfunction :r/a~0.6[1]

– Bulk plasma pressure excites 
instability
• Resistive interchange mode 

(mainly: m=1/n=1)
• Frequency:~1 kHz
• Peak of eigenfunction : r/a~0.9[2]

8[1] K. Ogawa NF 2010 [2] F. Watanabe PFR 2007



Increase of fast-ion loss due to TAE

• Time traces of magnetic 
fluctuation on TAE frequency and 
fast ion.
– Increase of fast-ion flux having E of 

50-180 keV and  of 35-45˚ due to 
TAE is observed.

– Fast-ion loss due to resistive 
interchange mode (RIM) is also 
observed on entire region of E and  .

– To focus on the TAE induced loss, 
effects of RIM on fast-ion loss are 
removed using numerical frequency 
band-stop filter.

• Large (Small) TAE leads to (large) 
small increase of fast ion.
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Frequency from 0.8 kHz to 1.2 kHz is excluded.



Dependence of fast-ion loss flux on 
TAE fluctuation amplitude

• Increment of lost-fast ion flux fast ion as a function of magnetic 
fluctuation amplitude bTAE
– fast ion is normalized by fast-ion components created by co-NBs (PNBcos).

• In case B, the dependence changes at bTAE/Bt of 7  10-5.
– In lower bTAE/Bt region  :fast ion/(PNBcos)  bTAE/Bt

– In higher bTAE/Bt region : fast ion/(PNBcos)  (bTAE/Bt)2

• Cases A and C, no clear change of dependence is observed.
– The change of dependence may appear in unexplored bTAE region.
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Setups for orbit-following simulation 
including TAE fluctuation
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Setups for orbit-following simulation

• Inside the plasma
– Guiding center orbits of fast ions are followed by DELTA5D [2].

• Including TAE fluctuation (detail is shown in next slide.)
• Only applicable inside LCFS -> DELTA5D uses equilibrium 

reconstructed by VMEC2000 [3].
• Outside the plasma

– Lorentz orbit of fast ion is followed.
• The SLIP measures the E and  of fast ions according to Larmor 

motion.

SLIP

PlasmaDELTA5D
(Guiding center orbit
with TAE) Vacuum region

Lorentz Orbit

Birth position of fast ion is given by HFREYA [1].
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[1] S. Murakami TFT 1995 [2] D. A. Spong BAPS 1999 [3] S. Hirshman JCP 1991



TAE fluctuation included in
orbit-following simulation

• Fluctuation of the TAE is mostly 
perpendicular to the magnetic 
field line.
– TAE is classified into shear 

Alfvén type.
• Fluctuation is modeled as

• Eigenfunction  is calculated 
with AE3D [1].
– The profile of TAE agrees with 

that obtained in experiment [2].
• Frequency chirping down rate is

20 kHz/ms.
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13[1] D. A. Spong PoP (2010) [2] K. Ogawa NF (2010)



Results of orbit-following 
simulation
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Dependence of fast-ion loss flux on 
TAE fluctuation amplitude

• The E of lost-fast ion : 120-180 keV
– cf. EXP: 50-180 keV

• The  of lost-fast ion : 30-40˚ 
– cf. EXP: 35-45˚

• In case B
– The change of dependence is 

reproduced.
– The critical bTAE/Bt is 3×10-5.
– Same order as experiment : 7×10-5

• In case A
– The dependence is similar to the 

experimentally observed dependence 
in low bTAE/Bt regime.

– The critical value of bTAE/Bt is 
predicted in unexplored regions of 
experiments.
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Calculation

Experiment



Orbits of fast ions with TAE fluctuation

• Small TAE : A fast ion near the confinement/loss boundary is lost 
immediately due to radial excursion by TAE (convective process).

• Large TAE : Orbit of a fast ion confined in the interior region is 
gradually expanded due to TAE -> Reaches LCFS (diffusive process).
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Possible explanation of
the phenomenon

• Small TAE: barely confined fast ions are lost -> convective process is dominant.
• bTAE increases -> orbits of fast ions existing interior region is expanded, then 

finally, lost from the plasma.
• Diffusive loss increases with bTAE -> Exceed convective type loss.
• Plateau region of fast-ion loss flux in case A might be due to the change of the 

transport of barely confined fast ions.

Convective type loss
fast ion/(PNBcos)  bTAE/Bt [1]

Diffusive type loss
fast ion/(PNBcos)  (bTAE/Bt)2 [1]
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[1] D. Sigmar PoFB 1992 



Summary

• Characteristics of TAE-induced fast-ion loss process are studied in 
the wide parameter ranges of LHD using SLIP.

• Dependence of fast ion on bTAE changed at certain bTAE in case B 
(Rmag =3.86 m).
– Low bTAE region : fast ion/(PNBcos)  bTAE/Bt

– High bTAE region : fast ion/(PNBcos)  (bTAE/Bt)2

• To study the observed phenomenon in detail, simulation based on 
orbit-following models that incorporated magnetic TAE fluctuation is 
performed.
– The simulation reproduces the change of fast-ion loss dependence on 

TAE fluctuation amplitude.
– It suggests the change of loss process from convective to diffusive 

character as predicted in axisymmetric model.
• The observed change of fast-ion loss dependence on TAE 

fluctuation amplitude can be explained by the change of the 
dominant loss process.
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