Results From Initial Snowflake Divertor Physics Studies on DIII-D

S. L. Allen, V. A. Soukhanovskii, T.H. Osborne, E. Kolemen, J. Boedo, N. Brooks, M. Fenstermacher, R. Groebner, D. N. Hill, A. Hyatt, C. Lasnier, A. Leonard, M. Makowski, W.H. Meyer, A. McLean, T. Petrie, D. Ryutov, J. Watkins

IAEA Fusion Energy Conference, San Diego, CA

October 8-12, 2012

DIII-D Experiments focus on SF(-) configuration

- Theory¹ predicts second order null of SF Divertor ($\nabla B_P \sim 0$)
 - Multiple strike points, increased volume and connection lengths
 - Increased edge shear, influencing pedestal stability
- Experiments² have made progress on comparisons
- DIII-D adds new data: Focus on SF(-) configuration

DIII-D Experiments focus on SF(-) configuration

- Theory¹ predicts with second order null of SF Divertor ($\nabla B_P \sim 0$)
 - Multiple strike points, increased volume and connection lengths
 - Increased edge shear, influencing pedestal stability
- Experiments² have made progress on comparisons
- DIII-D adds new data: Focus on SF(-) configuration
 - Experience on NSTX
- Possible heat flux control for future compact machines

¹D. D. Ryutov, PoP 14, 064502 2007, TH/P4-18 ²Vijvers EX/P5-22, ³Soukhanovskii EX/P5-21

DIII-D data adds new insight into Snowflake divertor

- Recent DIII-D long pulse (3s) results at high τ- H(89P) ≥ 2 in SF(-) configuration:
 - Divertor "attached" during SF (C III images)
 - 2-3 X Heat flux reduction due to SF geometry (IR camera)
 - Constant: Pedestal Profiles, Divertor Radiated Power (Bolometer)
 - Reduced Δ W(ELM) and ELM heat flux on divertor

in SF(-) with Gas Puffing:

- Divertor detaches, large radiating volume
- Further heat flux reduction
- Heat flux during ELM reduced

Compare DIII-D Normal Divertor with SF(-)

- Use NSTX control algorithm
- 2- External coils control strike points (F4B and F8B)
- 1- External coil moves 2nd null point (F5B)
- DIII-D and NSTX use similar Plasma Control Systems (PCS)

2.5X Divertor Heat Flux Reduction due to geometry

- $I_{p} = 1.2 \text{ MA}, B_{t} = 2 \text{ T}$ $P_{NBI} = 3-5 \text{ MW}$
- SF(-) maintained for \rightarrow 3s
 - Flux expansion \bigstar 2.5X
 - Radiated Power

 similar
 - Confinement -> similar
 - Heat Flux reduced Ψ 2.5X

New LLNL Periscope: IR image shows 3-D features of SF(-) operation on DIII-D

Lower Divertor C III Shows Attached SF Divertor

Shot 150673, 3056-3654ms, CIII (465nm)

SF(-) divertor conditions similar to "attached" divertor

- No significant change in divertor bolometer radiation
- Small recombination (Balmer n= 7-2 line)
- Tangential divertor $D\alpha$ and C III cameras show no detachment
- In contrast with NSTX where SF(-) detaches

9

Divertor Peak Heat Flux Reduced 2.5X in SF due to changes in divertor geometry

Pedestal profiles between ELMs very similar with and without SF(-)

• Slightly steeper and higher n_e, lower and flatter T_e with SF-

11

Detailed ELM Analysis: △W(ELM) decreased, W pedestal constant in SF

Detailed ELM analysis before/ during SF shows:

- Pedestal Energy (W_{PEDESTAL}) Constant
- **Confinement Constant**
- Change in stored energy lost per ELM (ΔW_{FLM}) is reduced
- Consistent with Loarte
 connection length scaling

New opportunity to study details of SOL transport in attached SF divertor; study ELMs

New opportunity to study details of SOL transport in attached SF divertor; study ELMs

SF + gas puffing reduces divertor ELM peak heat load

15

SF + Gas Puff Reduced ELM divertor heat flux over GP alone

SF + Gas Puff (expanded scale)

DIII-D data adds new insight into Snowflake divertor

- Recent DIII-D long pulse (3s) results at high τ- H(89P) ≥ 2 in SF(-) configuration:
 - Divertor "attached" during SF (C III images)
 - 2-3 X Heat flux reduction due to SF geometry (IR camera)
 - Constant: Pedestal Profiles, Divertor Radiated Power (Bolometer)
 - Reduced Δ W(ELM) and ELM heat flux on divertor

in SF(-) with Gas Puffing:

- Divertor detaches, large radiating volume
- Further heat flux reduction
- Heat flux during ELM reduced

DIII-D data adds new insight into Snowflake divertor

- Recent DIII-D long pulse (3s) results at high τ- H(89P) ≥ 2 in SF(-) configuration:
 - Divertor "attached" during SF (C III images)
 - 2-3 X Heat flux reduction due to SF geometry (IR camera)
 - Constant: Pedestal Profiles, Divertor Radiated Power (Bolometer)
 - Reduced Δ W(ELM) and ELM heat flux on divertor

in SF(-) with Gas Puffing:

- Divertor detaches, large radiating volume
- Further heat flux reduction
- Heat flux during ELM reduced
- Future snowflake studies:
 - Integration with high- δ Advanced Tokamak Scenarios
 - Clarification of detachment threshold w.r.t. standard divertor
 - Study of parallel versus perpendicular SOL transport SOL Physics
 - Heat flux control in compact machines, new regimes

Snowflake Divertor Results at the IAEA Conference: DIII-D adds recent new data

Ryutov – Original Theory TH/P4-18

20

TCV Heat Flux Reduction – Vijvers EX/P5-22

NSTX Heat Flux Reduction – Soukhanovskii EX/P5-21

Backup Slides

Initial DIII-D snowflake divertor results very encouraging and motivate further studies

- ✓ Demonstrated steady-state (2 s) snowflake-minus and plus configurations at $\sigma = d_{X-X}/a_{minor} = 0.15 0.20$
 - Optimized divertor geometry and plasma shape for pedestal profile measurements, analysis commencing
- Demonstrated beneficial magnetic geometry properties
- Demonstrated between-ELM peak divertor heat flux reduction via geometry
 - $\checkmark\,$ Favorable comparison with standard divertor geometry
 - ✓ Snowflake divertor attached at P_{NBI} =3-5 MW , 0.5 x n/n_G
 - ✓ High confinement maintained (HL89~2.1, H98(y,2)~1.2-1.3)

✓ Demonstrated radiative detachment at 0.55-0.75 x n/n_G

- Density scan using D₂ puffing
- ✓ Significant reduction of peak divertor heat flux, $P_{div-rad} ≤ 0.75 P_{tot}$
- ✓ Formation of MARFE-like X-point region outside of separatrix (?)
- Up to 20 % confinement degradation at higher densities

Snowflake divertor configuration reduces ELM and steady state heat flux

- SF configuration reduces heat flux 2-3X by flux expansion
- Divertor heat flux reduced
- \U00e4 W(ELM) reduced
- Core confinement (H98 > 2) and pedestal constant

Recent DIII-D Snowflake divertor experiments show heat flux reduction by flux expansion, ELM reduction

- SF configuration reduces heat flux 2-3X by flux expansion
- Divertor heat flux reduced
- \U00e4 W(ELM) reduced
- Core confinement (H98 > 2) and pedestal constant
- ELM heat flux reduced dramatically with gas puffing

