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* ELM suppression operating space - Significant advances in physics

expanded to include ITER baseline understanding of RMP effects
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Goal: Generate 3D field that is pitch-
aligned to the edge equilibrium field

ITER ELM Coil (IEC) 6,6 Geometry
- Total number of coils = 21
3 (rows) x 9 (coils)

ITER ELM Control Coils
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 Sustained for 3.5 s, limited only 8
by technical limits of power 6
supplies 4

2

I-coil current (kA

< >
Atqur=3.5s=45<E

 Approximates ITER baseline
specifications closely:

I/qB BN H98 V*,ped
DIII-D 140 1.8 0.9 0.12
ITER 1.41 1.8 1.0 0.10

} ITER
{JTargets

e Achieved with n=3 RMP from
single row of I-coils

Proof-of-principle that RMP ELM
suppression can be achieved in
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RMP ELM suppression demonstrated < Transition to ELMs occurs at density

in plasmas with up to 25% helium and collisionality levels consistent
fraction (n,./n.) with deuterium database
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In non-RMP H-mode, pedestal
continues to expand until ELM is
encountered
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In non-RMP H-mode, pedestal
continues to expand until ELM is
encountered

- Consistent with EPED1 model

EPED1 Model, DIII-D 144977 (with dynamics)
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In non-RMP H-mode, pedestal e Model: MHD response at top of

continues to expand until ELM is pedestal enhances transport
encountered and stops pedestal expansion
- nsistent with EPED1 m |
Consistent wi ode 12 [] Vacuum /\ Two Fluid
EPED1 Model, DIII-D 144977 (with dynamics) o 8 : A :
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In non-RMP H-mode, pedestal e Model: MHD response at top of

continues to expand until ELM is pedestal enhances transport
encountered and stops pedestal expansion
- Consistent with EPED1 model 8
- n gy
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In non-RMP H-mode, pedestal
continues to expand until ELM is
encountered

Consistent with EPED1 model

EPED1 Model, DIII-D 144977 (with dynamics)
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Model: MHD response at top of
pedestal enhances transport
and stops pedestal expansion

— Avoiding ELM instability boundary

EPED Model for RMP ELM Suppression (145419)
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* Island location and
widths based on
SURFMN vacuum

field analysis
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* In vacuum model, large islands R 143
generated in edge region s Vacuum Islands ]

s 4 =

L — -

2 E =

 Applied field shielded by image 5 3 =
currents on rational surface fif: @ L =

— Resistivity is small (frue 0.80 0.85 0.90 0.95 1.00
everywhere but edge) Normalized Flux

— Sufficient plasma rotation
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* In vacuum model, large islands = 143
generated in edge region s Vacuum Islands ]
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 In vacuum model, large islands _ S - E
generated in edge region K=} B E
& 4 E
L — —
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 Applied field shielded by image § 3 81 i Fesiative
currents on rational surface if: , =— MHD Islands -
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o . b Field Penetration and  Screened _
— Sufficient p|03m0 rotation : Potential Amplification ~ Fields
100 - ’ e
; 8o /|
* Fields can “penetrate” at low Nneol10™ €2 “[‘2/ _
perpendicular electron frequency 0 SRS R I
o Q) l,e(krad/s)
W, o = Wgxp + V¢ diq B
» 2-Fluid model predicts larger islands 200 | T
P g€ ! 0.80 0.85 0.90 0.95 1.00
at top of pedestal, smaller in barrier Normalized Flux

i’ g!!ﬂ%\::g MR Wade/IAEA/October 2012 MHD Response - Theory




* High Gradient Region

— Screening but
distortion of flux
surfaces

e Divertor: Lobe Structures
Near X-point

— Homoclinic tangles

T

e Top of Pedestal

— Field penetration
leading to possible
island formation
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Top View n = 2 B, at midplane

e Diagnostic locations are fixed
— Can only sample local perturbation

 However, RMP can be rotated with
respect to diagnostics to measure
toroidal variation of perturbation

 DIII-D I-coil set has 6 coils per row

allowing
— n=2 Full foroidal rotation

— n=3 Only two toroidal phases
separated by 60° toroidally
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Top View n = 3 B, at midplane
e Diagnostic locations are fixed
— Can only sample local perturbation

 However, RMP can be rotated with
respect to diagnostics to measure
toroidal variation of perturbation

 DIII-D I-coil set has 6 coils per row
allowing
— n=2 Full toroidal rotation

— n=3 Only two toroidal phases
separated by 60° toroidally
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e Divertor: Lobe Structures
Near X-point

— Homoclinic tangles

T
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 Strike-point splitting with qq;
variation predicted by vacuum
model

(=)
T

e Exireme soft X-ray imaging detects
lobe structures at X-point — —>

— Homoclinic tangles

Vertical position (au)
N

Frame Frame, , (x10° cts)
o

* Large floating potential detected
on divertor probes when predicted
lobe location coincident with
probe

Vertical position (au)

0
Radial position (au)
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 Strike-point splitting with qq;
variation predicted by vacuum
model

(=)
T

e Exireme soft X-ray imaging detects
lobe structures at X-point — —>

— Homoclinic tangles

Vertical position (au)
N

Frame Frame, , (x10° cts)
o

* Large floating potential detected
on divertor probes when predicted
lobe location coincident with
probe

Vertical position (au)
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* High Gradient Region

— Screening but
distortion of flux
surfaces
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o Significant displacements
(~2-3 cm) observed at
midplane as n=2 RMP is rotated

. . g £ - 1509
e Toroidal variation of o«
measurements confirms n=2
perturbation structure - 210°
228
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 Significant displacements
(~2-3 cm) observed at 3500
midplane as n=2 RMP is rotated BES emission

3400

* Toroidal variation of
measurements confirms n=2 3300

perturbation structure D _
E Location of
: : , £ 3200 stable and
* Size of displacement is factor of = unstable
4-5x larger than vacuum manifolds
prediction 3100
— Suggests importance of MHD

response to applied field 3000¢

222 22 2.30 2.34
R (m)
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« To accentuate confined plasma « Tomographic reconstruction
emission, high energy (~600 eV) filter reveals internal structures

used
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e Top of Pedestal

— Field penetration
leading to possible
island formation
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e Toroidal phase of n=3
RMP switched by 60°

every 200 ms E
o B
N 66
* Observe correlated :
displacement at very L8
edge similar to n=2 case ¢ *: ;
3 Ok-t1-A--F-t-1----r-1---3
e However, response 85 .
toward top of pedestal 't
shows phase inversion 2 -
— What causes this2e?2 8 | :
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TIME (ms)
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e Displacement computed assuming change in T,
profile due entirely to flux surface displacement
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Significant displacement
observed at edge

— Similar fo n=2 observations

 Phase inversion layer near

pedestal top

* Island-like signature apparent

just inside pedestal top

— Coincident with computed
location of m=10/n=3 island

 Required compensation of n=3
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error field to avoid synchronous

n=0 T, modulations
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0.041

Inferred core displacement G955 s
significantly affected by 002
interaction with n=3 error field ‘ DC Offset
- Due to n=0 changes in 0,00 -AA o) "PPIed
0 "

global confinement Ba.x

However, edge displacement -0.02/

and phase inversion location »
does not change appreciably -0.04L -

0.85 0.90 0.95 1.00
Unperturbed Normalized Flux

Symmetric n=3
RMP Applied

Displacement (Normalized flux)
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e Systematic increase in inferred 0.04 T ,'3-3-"31'-31- ]
displacement with qq; » _10/3 A 0g5=3.55
— Also observed with n=2 0.02| 101 lg5=3.4
RMP o )

* Phase inversion location

Displacement (Normalized flux)

moves inward as qg; 0001
increases
e Tracks m=10/n=3 island ~0.02) |
position computed by w
SURFMN ~0.04

0.85 0.90 0.95 1.00
Normalized Psi

Evidence for island-driven
transport??
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By switching sign of toroidal Co-NBI

Counter-NBlI
rotation, w, . =0 crossing at | |

top of pedestal is eliminated 0Lt T
% L T T ===
W) e = Wgyxp T D¢ giq B 50
5-1001 wEXB \ -
 If MHD response is strongly - IIZ We,dia \‘ -
dependenton |w, .,e| =0, -1501 ; e

should be difficult to obtain ELM
suppression with counter NBI of
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e ELMs remain in counter-NBI Co-NBI Counter-NBI
Qo5 .ELM suppress:ion window n=3 RMP On
typically seen with co-NBI '

— Even at comparable
density ‘1’

—t

* Small window of ELM

0/m=

suppression observed af
~ 2k
at q; .4.0 2
— EHO signature also a0f
observed > QH-modes?¢ 35¢

" 1000 2000 3000 4000

Time (ms)
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ELM suppression extended to
ITER scenarios

— ITER Baseline Scenario
— Large helium fraction

Measurements consistent with
emerging model

— RMP induces MHD response at
top of pedestal

— Resulting fransport impedes Pedestal

further widening of the Pressure
pedestal

- Peeling-ballooning stability

maintained — No ELMsl!] Rem?,se
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 ELM suppression extended to

Future Plans
ITER scenarios

— ITER Baseline Scenario

— Compatibility with fueling
— Large helium fraction

— Pure helium plasmas

e Measurements consistent with
emerging model

— RMP induces MHD response at - Befter quantify MHD response
top of pedestal across range of conditions

— Resulting transport impedes
further widening of the — Connect MHD response to
oedestal transport modifications

- Peeling-ballooning stability
maintained — No ELMsl!!

Dil-D
FUS| FACILITY
N DIEGO

MR Wade/IAEA/October 2012
35  NATIONAL FUSIGN
sA

0:0 GENERAL ATOMICS





