

Background

Maintenance is a critical issue for fusion DEMO reactor because the design conditions and requirements for DEMO maintenance scheme are different from ITER.

Difference betwee	en ITER and	DEMO remote n	naintenance	
Replacement com	oonents ITER:s	everal/each DEMO :	overall/each	
Irradiation				
 ✓ Dose rate ITER : 0.5kGy/hr DEMO : Shutdown[※] : ~300kGy/hr 1 month later : ~30kGy/hr ✓ Decay heat 				DEMO (SlimCS) P _f : 3GW 2FPY
	Devices	Permissible dose (Accumulation dose)	Operation time [*]	
	Motor	10-80MGy	33-266hr	
	Imaging fiber	2-5MGy	6-16hr	
	Location sensor	10-30MGy	33-99hr	

Focus of this research:

- critical design factors and key engineering issues on the sector transport maintenance scheme considering three different maintenance schemes based on sector transport
- a feasible maintenance scenario option considering handling of decay heat in sector transport maintenance

Summary

Critical design factors:

- How to support an enormous turnover force of the TF coils
 - -> By limiting the number of maintenance ports, an enormous turnover force of the TF coils can be supported.
- The transferring mechanism of sector in the vacuum vessel
 - -> the wheeled plat-form considered the radiation resistance was proposed.
- Maintenance scenario under the high decay heat
 - After the cooling down time of one month, each sector of SlimCS would be allow to transport to the hot cell facility only by gas-cooling.
 - Considering plant availability, additional cooling system in cryostat would be required for **unexpected interruption** during RM such as trouble of cooling pipe handling and sector transport.

Critical Design Factor for Sector Transport Maintenance in DEMO H. Utoh, Y. Someya, K. Tobita, N. Asakura, K. Hoshino, M. Nakamura Japan Atomic Energy Agency

(maximum load rating of 30 ton/jack)

