TH/P3-14

# **Multi-Scale MHD Analysis of Heliotron Plasma in Change of Background Field**

# K. ICHIGUCHI, S. SAKAKIBRA, S. OHDACHI (National Institute for Fusion Science, JAPAN), B. A. CARRERAS (BACV Solutions Inc., USA)



24<sup>th</sup> IAEA Fusion Energy Conference, October 8-13, 2012, San Diego, USA

# **Variable Separation**

| Equilibrium and Perturbed Parts                                         | Average and           |
|-------------------------------------------------------------------------|-----------------------|
| $\Psi( ho,	heta,\zeta;t)=\Psi_{eq}( ho)+	ilde{\Psi}( ho,	heta,\zeta;t)$ | $P( ho,	heta,\zeta;t$ |
| $\Phi( ho,	heta,\zeta;t)=	ilde{\Phi}( ho,	heta,\zeta;t)$                |                       |

$$rac{\partial \Psi}{\partial t} = - 
abla_{\parallel} ilde{\Phi} + rac{1}{S} ilde{J}_{\zeta}$$

$$egin{aligned} rac{\partial ilde{U}}{\partial t} &= -[ ilde{U}, ilde{\Phi}] - 
abla_{\parallel} ilde{J}_{\zeta} - [ ilde{\Psi},J_{\zeta eq}] + rac{1}{2\epsilon^2} [\Omega_{eq}, ilde{H}] \ & rac{\partial \hat{P}}{\partial t} = -[\widehat{P, ilde{\Phi}}] + \kappa_{\perp} \widehat{\Delta_* P} + \kappa_{\parallel} \ & rac{\partial \langle P 
angle}{\partial t} = -\langle [\widehat{P}, ilde{\Phi}] 
angle + egin{aligned} \kappa_{\perp} \langle \Delta_* \langle P 
angle 
angle + \kappa_{\parallel} \langle 
abla_{\parallel}^{\dagger 2} 
angle \end{aligned}$$

**Anomalous transport** 

$$\begin{split} \left( \begin{bmatrix} y, z \end{bmatrix} &= \frac{g}{\rho} \left( \frac{\partial y}{\partial \rho} \frac{\partial z}{\partial \theta} - \frac{\partial y}{\partial \theta} \frac{\partial z}{\partial \rho} \right), \nabla_{\perp} f = \nabla f - \nabla \zeta \frac{\partial f}{\partial \zeta}, \nabla_{\parallel} f = g \frac{\partial f}{\partial \zeta} + \begin{bmatrix} \Psi, f \end{bmatrix} \\ \Omega &= \frac{1}{2\pi} \int_{0}^{2\pi} d\zeta \left( \frac{R}{R_0} \right)^2 \left( 1 + \frac{|B_{eq}(R, \zeta, Z) - \overline{B_{eq}}(R, Z)|^2}{B_0^2} \right), \quad \boldsymbol{v}_{\perp} = \left( \frac{R}{R_0} \right)^2 \nabla \cdot \nabla_{\perp} \Phi, \quad J_{\zeta} = \Delta_* \Psi = \left( \frac{R}{R_0} \right)^2 \nabla \cdot \left( \frac{R_0}{R} \right)^2, \end{split}$$



2. Equilibrium at t=ti+1 is calculated, predictor : with  $Q\Delta t$  for pressure.

Variation of Rvax Heating profile







These properties are consistent with the experimental results.