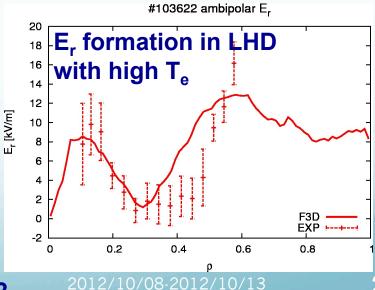
Turbulence Spectra, Transport, and ExB Flows in Helical Plasmas

T.-H. Watanabe^{1,2}, M. Nunami^{1,2}, H. Sugama^{1,2}, S. Satake^{1,2}, S. Matsuoka^{1,2}, A. Ishizawa¹, S. Maeyama³, and K. Tanaka¹,


¹National Institute for Fusion Science ²The Graduate University for Advanced Studies (Sokendai) ³Japan Atomic Energy Agency

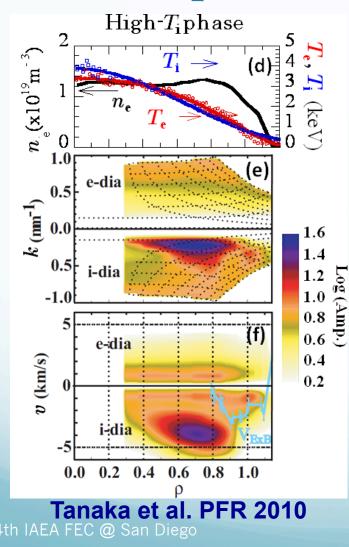
24th IAEA FEC @ San Diego

Non-axisymmetry: Big challenge in GK simulation of turbulence

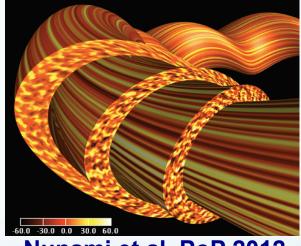
- Non-axisymmetry introduces ...
 - Complicated particle orbits (e.g. ripple trapped particles)
 - Non-uniform B both in θ and ζ directions
 - Fast parallel motions of passing particles through ripples
 - Major difficulty in EM GK simulation Ishizawa et al. TH/P2-23
 - Poloidal rotation due to the neoclassical transport
- Neoclassical transport $=> E_r$
 - influences ZFs and turbulence which affect *n* & *T* profiles
- Zonal flow response depends on
 - Effective helical ripples
 - Equilibrium radial electric field

FORTEC-3D results Matsuoka et al. 2012

24th IAEA FEC @ San Diego

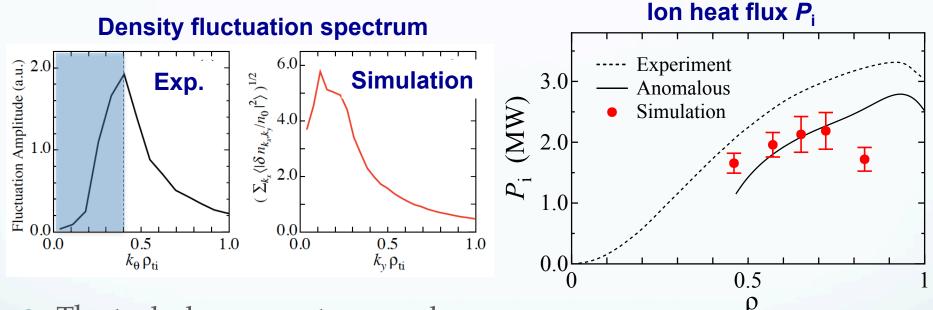

2

Outline


- Introduction
- Gyrokinetic simulations for high-T_i LHD plasmas
 - Validation against LHD experiments
- Turbulence spectra and entropy transfer through ZFsturbulence interactions
- Multi-scale modeling of helical plasmas with poloidal ExB rotation
 - Collective growth of ZFs in the flux-tube bundle simulation

Summary

Validation of GK simulations against LHD exp. has recently been advanced


• GKV-X simulations for LHD high- T_i plasma with the 3D experimental configuration.

Nunami et al. PoP 2012

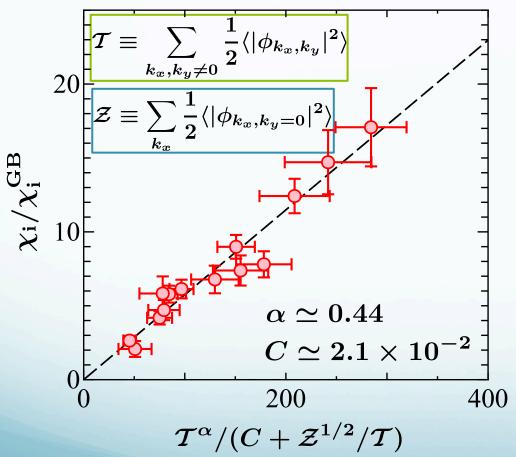
 Observed density fluctuations are consistent with results of the ITG turbulence simulations

Ion heat transport and turb. spectrum in the high- T_i LHD plasma (#88343)

IFERC-CSC

 The turbulence spectrum and the ion heat flux obtained from GK simulations are relevant to the experimental results.

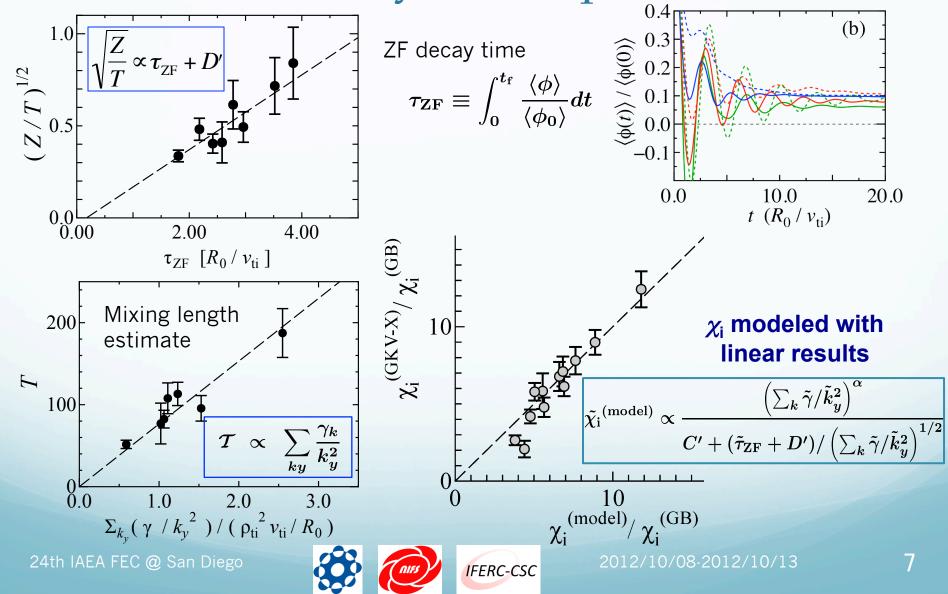
Anomalous part = Total heat flux – Neoclassical part


Neoclassical part <= GSRAKE (Beidler et al. 1995)

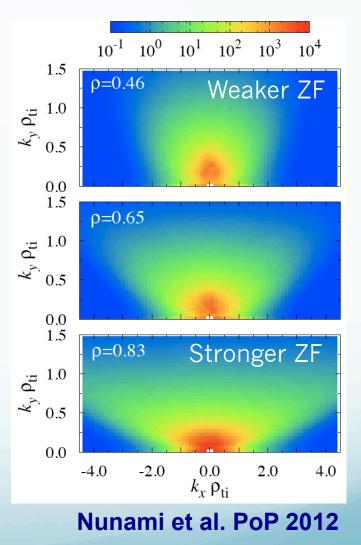
24th IAEA FEC @ San Diego

Summary of χ_i in terms of the turbulence and zonal flow energy

GKV-X runs for high-T_i and inward-shifted cases


- Numerical modeling of the ion heat transport coefficient is tested.
- χ_i given by GK simulations are well fitted by means of turbulence and zonal flow energy (*T* and *Z*).
- Useful for construction of a reduced transport model.

24th IAEA FEC @ San Diego


IFERC-CSC

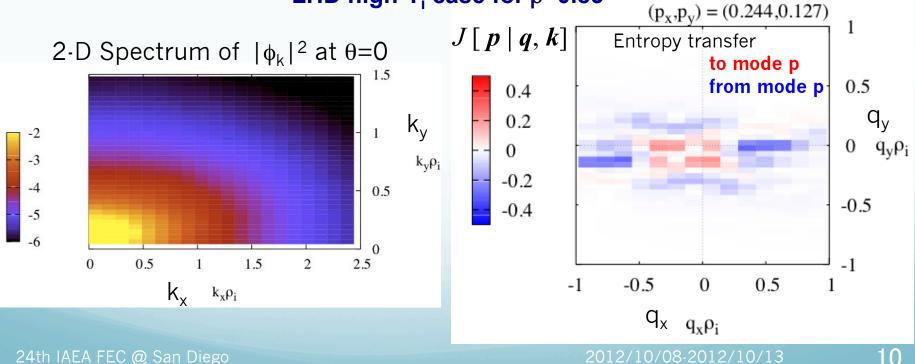
Turbulence and zonal flow energy modeled by linear quantities

Turbulence Spectrum and Entropy Transfer

The spectral spreading in k_r direction is attributed to the strong magnetic shear and zonal flows.

Turbulent entropy transfer function T_{ik} describes turbulence-ZF interactions

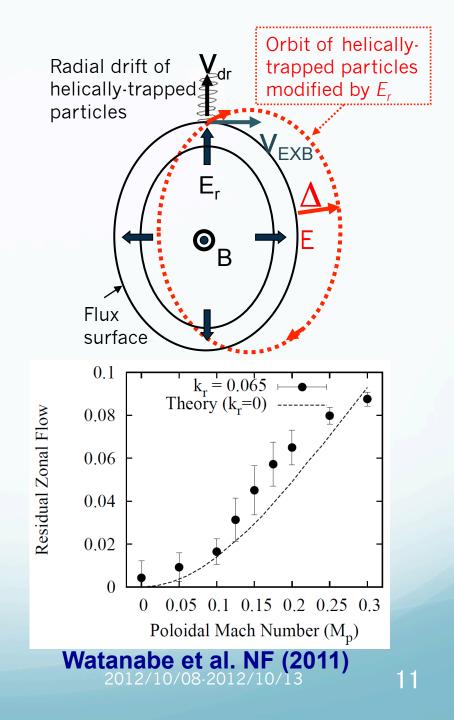
• From GK equations for each wavenumber **k**, one finds the entropy transfer among turbulence and ZF components


$$\frac{\partial}{\partial t} \left(\delta S_{i\mathbf{k}} + W_{\mathbf{k}} \right) = L_T^{-1} Q_{i\mathbf{k}} + T_{i\mathbf{k}} + D_{i\mathbf{k}} \qquad \delta S_{i\mathbf{k}_\perp} = \left\langle \int d\mathbf{v} \frac{|\delta f_{i\mathbf{k}_\perp}^{(g)}|^2}{2F_M} \right\rangle$$

- δS_{ik} : Entropy variable, W_k : potential energy, Q_{ik} : turbulent ion heat flux, D_{ik} : collisional dissipation
- Entropy transfer function *T_{ik}* describes nonlinear ExB interactions among turbulence and ZFs Nakata et al. PoP 2012
 *T*_{ik⊥} = ∑_{*q*⊥} ∑_{*p*⊥} δ<sub>*k*⊥+*p*⊥+*q*⊥,0*J*_i[*k*⊥|*p*⊥, *q*⊥]
 *J*_i[*k*⊥|*p*⊥, *q*⊥] = ⟨ ^{*c*}/_{*B*}*b* · (*p*⊥ × *q*⊥)∫ d*v* ¹/_{2FM} Re[δψ_{*p*⊥} h_{i*q*⊥} h_{i*k*⊥} − δψ_{*q*⊥} h_{i*p*⊥} h_{i*k*⊥}] ⟩
 Successive entropy transfer into high *k*_r region in ITG turb.

 </sub>

Successive entropy transfer function leads to spreading of turb. spectrum


• When ZFs are strongly generated in LHD plasma (e.g. inward-shifted or $\rho > 0.65$), the successive entropy transfer leads to spreading of the turbulence spectrum in k_r. LHD high-T_i case for ρ =0.83

Enhancement of Zonal Flow Response by *E*_r

The equilibrium-scale radial electric field E_r generated by the neoclassical transport improves

- collisionless particle orbits, and
- simultaneously enhances the ZF response

Flux-Tube Bundle Model for Multi-Scale Interactions of E_r , ZFs, and Turbulence

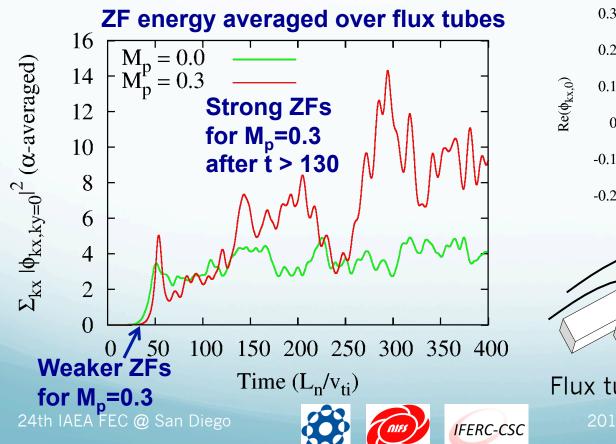
• Zonal flow components with α dependence (non-axisymmetry)

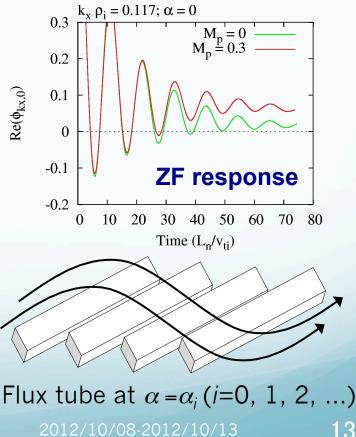
$$\left[\frac{\partial}{\partial t} + v_{\parallel}\boldsymbol{b}\cdot\nabla + v_{dx}\frac{\partial}{\partial x} - \frac{\mu}{m}(\boldsymbol{b}\cdot\nabla B)\frac{\partial}{\partial v_{\parallel}} + \omega_{\theta}q\frac{\partial}{\partial \alpha}\right]\hat{f} = \left(-v_{dx}\frac{\partial\hat{\Phi}}{\partial x} - v_{\parallel}\boldsymbol{b}\cdot\nabla\hat{\Phi}\right)\frac{e}{T}F_{M} + C(\hat{h}) + S_{i}^{ZF}$$

• Turbulence components in the *i*th flux tube at $\alpha = \alpha_i$

$$\begin{bmatrix} \frac{\partial}{\partial t} + v_{\parallel} b \cdot \nabla + v_{d} \cdot \nabla - \frac{\mu}{m} (b \cdot \nabla B) \frac{\partial}{\partial v_{\parallel}} - \omega_{\theta} r_{0} \frac{\partial}{\partial y} \end{bmatrix} \tilde{f} + \frac{c}{B_{0}} \{\Phi, \delta f\}_{i} \qquad \text{Flux tube at } \alpha = \alpha_{i}$$

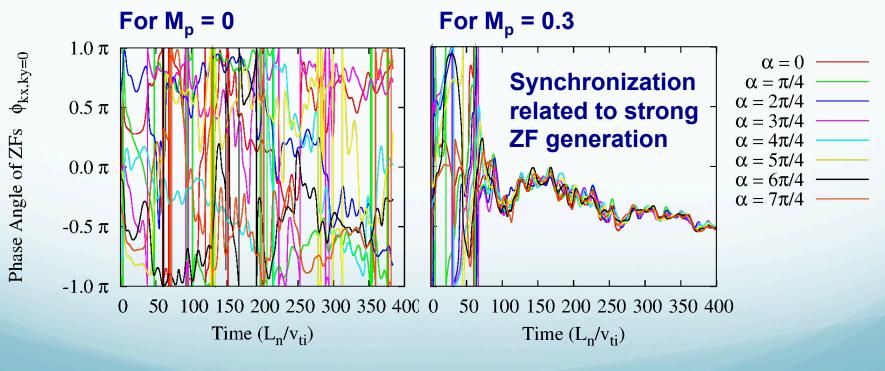
$$(i=0, 1, 2, ...)$$


$$= (v_{*} - v_{d} - v_{\parallel} b) \cdot \frac{e \nabla \Phi}{T} F_{M} + C(\tilde{h}) - S_{i}^{ZF}$$
where
$$\frac{c}{B_{0}} \{\Phi, \delta f\}_{i} \Rightarrow \sum_{\mathbf{k} = \mathbf{k}' + \mathbf{k}'} \mathbf{k}'' \Phi_{i,\mathbf{k}'} \delta f_{i,\mathbf{k}''} \qquad S_{i}^{ZF} = -\frac{c}{B_{0}} \{\Phi, \delta f\}_{i}$$


$$\delta f_{i,\mathbf{k}} = \begin{cases} \tilde{f}_{i} & \text{for } k_{y} \neq 0 \\ \hat{f} (\alpha = \alpha_{i}) & \text{for } k_{y} = 0 \end{cases}$$

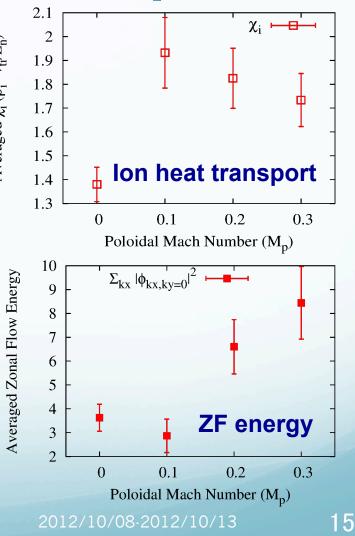
24th IAEA FEC @ San Diego

Zonal flow generation by turbulence is enhanced by poloidal ExB rotation


• Multi-scale simulation of the ITG turbulence with eight flux tubes for the inward-shifted LHD model

Poloidal ExB rotation synchronizes radial phase of ZFs in flux tubes

• Collective growth of ZFs in the flux-tube bundle model appears for $M_p = 0.3$ through matching of the radial phase angles, or synchronization.


IFERC-CSC

24th IAEA FEC @ San Diego

Transport reduction by ZFs enhanced in case with finite rotation ($M_p > 0.1$)

For cases with $M_p > 0.1$, the 2.12 turbulent transport is reduced Averaged χ_i ($\rho_i^2 v_{ti}/L_{n}$) 1.9 by enhanced ZFs, while χ_i is 1.8 1.7 still larger than that for $M_p = 0$. 1.6 3.5 1.5 $M_{\rm p} = 0.0$ 1.4 α -averaged $\chi_i ({\rho_i}^2 v_{ti}/L_n)$ 3 Xi 1.3 2.5 2 10 Averaged Zonal Flow Energy 9 1.5 8 χ_i reduction 7 by strong 6 0.5 ZFs due to E_r 5 0 4 200 300 400 500 600 700 800 100 0 3 χ_i peaks depending on Time (L_n/v_{ti}) 2 the initial ZF growth 24th IAEA FEC @ San Diego IFERC-CSC

Summary

- Recent developments of gyrokinetic simulations for LHD
 - Validation, modeling, multi-scale ZFs, electromagnetic etc.
- The gyrokinetic simulation of ITG turbulence for helical plasmas is validated against the LHD experiments.
 - Radial profile of ion heat transport flux relevant to LHD exp.
 - Transport modeling based on the turbulence and ZF energy.
- Entropy transfer analysis among turbulence and ZFs
 - Quantitative evaluation for ZF-turbulence interactions
 - Contribution to spreading of turbulence spectrum in k_r
- A multi-scale model developed for non-axisymmetric toroidal plasmas with mean E_r .
 - Collective growth of ZFs through the radial phase matching
 - Influence of the poloidal rotation on turbulent transport