Turbulence Spectra, Transport,
and ExB Flows in Helical
Plasmas

T.-H. Watanabe!?, M. Nunami'?, H. Sugama'?, S. Satake!?,
S. Matsuokal?, A. Ishizawa!, S. Maeyama?, and K. Tanaka!,

!National Institute for Fusion Science
?The Graduate University for Advanced Studies (Sokendai)
JJapan Atomic Energy Agency

24th IAEA FEC @ San Diego ' e 2012/10/08-2012/10/13




Non-axisymmetry: Big challenge in
GK simulation of turbulence

Non-axisymmetry introduces ...

® Complicated particle orbits (e.g. ripple trapped particles)

® Non-uniform B both in 6 and & directions

® Fast parallel motions of passing particles through ripples
Major difficulty in EM GK simulation Ishizawa et al. TH/P2-23

® Poloidal rotation due to the neoclassical transport

#103622 ambipolar E,

Ne.oclassmal transport => E, + [E, formation in LHD
® influences ZFs and turbulence °Iwith highT, |
which affect n & T profiles .
Zonal flow response depends on ¥ .|
® Effective helical ripples oL Tii
® Equilibrium radial electric field N | | , 55—
FORTEC-3Dresults =~~~ , © °

Matsuoka et al. 2012



Outline

® Introduction

® Gyrokinetic simulations for high-T, LHD plasmas

® Validation against LHD experiments

® Turbulence spectra and entropy transfer through ZFs-
turbulence interactions

® Multi-scale modeling of helical plasmas with poloidal
ExB rotation

® (Collective growth of ZFs in the flux-tube bundle simulation
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Validation of GK simulations against
LHD exp. has recently been advanced

High'Tiphafe | GKV-X simulations for LHD
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[on heat transport and turb. spectrum
in the high-T. LHD plasma (#88343)
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The turbulence spectrum and
the ion heat flux obtained
from GK simulations are

Anomalous part
= Total heat flux — Neoclassical part

relevant to the experimental
results.

Neoclassical part

<= GSRAKE (Beidler et al. 1995)
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Summary of y; in terms of the
turbulence and zonal flow energy

GKV-X runs for high-T; and
inward-shifted cases
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Numerical modeling of
the ion heat transport
coefficient is tested.

x; given by GK
simulations are well
fitted by means of
turbulence and zonal
flow energy (T and Z).

Usetul for construction
of a reduced transport
model.



Turbulence and zonal flow energy
modeled by linear quantities
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Turbulence
Spectrum and
Entropy Transfer

The spectral spreading in k,
direction is attributed to the strong
magnetic shear and zonal flows.

 P=083  Stronger ZF |
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Turbulent entropy transtfer function T},
describes turbulence-ZF interactions

From GK equations for each wavenumber k, one finds the
entropy transfer among turbulence and ZF components

(g) 2
58, +W )=L'0 + D. o / 6]
at( ik ) T =ik ik 531,“ = dv QFM

0S;.: Entropy variable, W,: potential energy, Q,,: turbulent
ion heat flux, D, : collisional dissipation

Entropy transfer function T}, describes nonlinear ExB
interactions among turbulence and ZFs  Nakata et al. PoP 2012
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Successive entropy transfer into high k. region in ITG turb.




Successive entropy transfer function
leads to spreading of turb. spectrum

When ZFs are strongly generated in LHD plasma (e.g.
inward-shifted or p > 0.65), the successive entropy
transfer leads to spreading of the turbulence spectrum

in k,. LHD high-T, case for p=0.83
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. Orbit of helically- :
r i trapped particles :
: modified by E, :

....................................................

Radial drift of
helically-trapped?
particles
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Zonal Flow
Response by E e
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Flux-Tube Bundle Model for Multi-Scale
Interactions of E_, ZFs, and Turbulence

® Zonal flow components with o dependence (non-axisymmetry)
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® Turbulence components in the ith flux tube at a=¢,
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Zonal flow generation by turbulence is
enhanced by poloidal ExB rotation

Multi-scale simulation of the ITG turbulence with eight
flux tubes for the inward-shifted LHD model

k p;=0.117; =0

ZF energy averaged over flux tubes 0.3
16 T T T T T T T N
= M =00 —— 02
g)ﬁ 14 _Mp:0.3 N ° 01 r
S 10k Strong ZFs . &
] g-% 0+
5 10 L for M =0.3
3 o | after t > 130 0T ZF response |
B o2L—— v . . .
g‘ 6 - 0 10 20 30 40 50 60 70 80
'i Time (L /vy;)
& 4T
R D -
A
0 1 | | | 1 1 |
W kOfZéo 100 150 200 250 300 350 400
eaker ZFs . .
for Mp=0'3 Time (Ln/vti) Flux tube at a=qQq,; (/=O, ]., 2, )

@ @ IFERC-CSC



Phase Angle of ZFs ¢y, 1\

Poloidal ExB rotation synchronizes
radial phase of ZFs in flux tubes

Collective growth of ZFs in the flux-tube bundle model
appears for M, = 0.3 through matching of the radial phase
angles, or synchronization.
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Transport reduction by ZFs enhanced
in case with finite rotation (]\/Ip >(.1)

For cases with M, >0.1, the
turbulent transport is reduced
by enhanced ZFs, while y; is

still larger than that for M, = 0.
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Averaged y; (pi2 vi/Ly)

Averaged Zonal Flow Energy
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Summary

® Recent developments of gyrokinetic simulations for LHD
® Validation, modeling, multi-scale ZFs, electromagnetic etc.

® The gyrokinetic simulation of ITG turbulence for helical
plasmas is validated against the LHD experiments.

® Radial profile of ion heat transport flux relevant to LHD exp.
® Transport modeling based on the turbulence and ZF energy.

® Entropy transfer analysis among turbulence and ZFs
® (Quantitative evaluation for ZF-turbulence interactions
® Contribution to spreading of turbulence spectrum in k,

® A multi-scale model developed for non-axisymmetric
toroidal plasmas with mean E..

® Collective growth of ZFs through the radial phase matching
~ ® Influence of the poloidal rotation on turbulent transport
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