Extension of Operational Regime in High-Temperature Plasmas and the Dynamic-Transport Characteristics in the LHD

<u>H. Takahashi</u>, M. Osakabe, K. Nagaoka, S. Murakami¹⁾, I. Yamada, Y. Takeiri,
M. Yokoyama, H. Lee²⁾, K. Ida, R. Seki, C. Suzuki, M. Yoshinuma, T. Ido, A. Shimizu,
M. Goto, S. Morita, T. Shimozuma, S. Kubo, S. Satake, S. Matsuoka, N. Tamura,
H. Tsuchiya, K. Tanaka, M. Nunami, A. Wakasa¹⁾, K. Tsumori, K. Ikeda, H. Nakano,
M. Kisaki, Y. Yoshimura, M. Nishiura, H. Igami, T. Seki, H. Kasahara, K. Saito,
R. Kumazawa, S. Muto, K. Narihara, T. Mutoh, O. Kaneko, H. Yamada

E-mail: takahashi.hiromi@LHD.nifs.ac.jp

National Institute for Fusion Science, Toki 509-5292, Japan ¹⁾ Department of Nuclear Engineering, Kyoto University, Kyoto 606-8501, Japan ²⁾ Department of Nuclear Fusion and Plasma Science, University of Science and Technology (UST), Gajungro 217, Daejeon 305-350 Korea

Outline

<u>1. Extension of High-Temperature Regime in the LHD</u></u>

- Upgraded heating property and the new scenario

with ICRF-wall conditioning

2. Characteristics of High-T_i Plasmas with ion ITB

- Centre-peaked T_i , reduction of χ_i , energy-confinement improvement,

and the negative E_r formation

<u>3. Dynamic Transport Analyses for High-</u>*T***_i Plasmas**

- Temporal change of the heat/momentum-transport state

<u>4. Future Prospect</u>

- Toward the quasi steady state operation

5. Summary

Extension of High-Temperature Regime with Upgrade Heating Property

Achievement of $T_i = 7 \text{ keV}$

> Installation of a new perp. NBI (6 MW/40 keV).

> New operation with ICRF wall conditioning.

-> n_e profile: hollow -> flat/parabolic,

-> Increase of P_i/n_e in the core, -> T_{i0} of 7 keV.

> High T_i regime has been extended.

Extension of high-*T*_e **regime**

- > Since 2007, Gyrotron x3 (Over 1 MW each/ 77 GHz).
- > Increase of P_{ECH} -> Extension of high T_{e} regime.
- (1) Achieved highest temperature -> $T_{e0} = 20 \text{ keV} (n_{e_{fir}} = 0.20 \times 10^{19} \text{ m}^{-3}).$

(2) High density condition,

-> $T_{e0} = 8.7 \text{ keV} (n_{e_{fir}} = 1.1 \times 10^{19} \text{ m}^{-3}), T_{e0} = 1.3 \text{ keV} (n_{e_{fir}} = 5.4 \times 10^{19} \text{ m}^{-3}).$

Characteristics of High-*T*_i Plasmas with Ion ITB

Typical time evolution in a carbon pellet discharge

In the C-pellet discharge,

- > T_i and dT_i/dr_{eff} increased in the core -> ion-ITB
- > $T_{\rm e}$ was not improved -> $T_{\rm e}/T_{\rm i}$ dropped to 0.5.
- > The energy confinement improved by a factor of 1.5.
- > χ_i reduced in the entire region.
- > The improved confinement was transient.

Relation between grad- T_i **and** V_{ϕ} **shear**

> Centre-peaked profile of V_{ϕ} was formed.

> V_{ϕ} shear clearly increased with increase of T_{i} gradient.

Radial electric field in ion ITB plasma

Neoclassical transport,

- > Huge if $E_r = 0$.
- > Significantly reduced due to E_r .
- <u>*E_r* was measured using HIBP,</u>
- ➢ Low T_i → E_r ~0
- > Ion ITB -> Negative $E_r \leftrightarrow$ grad T_i

Dynamic Transport Analyses for High-T_i Plasmas

Temporal change of χ_i and μ_{ϕ}

> Temporal behaviour of χ_i

Plasma Core -> Slow change, great decrease.

Peripheral -> Fast change, **small decrease**.

> Toroidal-momentum transport was also improved.

Flux-gradient relation ~Heat transport~

The slope in the flux-gradient relation -> χ_{i} , χ_{e}

Improvement of the Ion-heat transport -> Back to Iow confinement branch.

The electron-heat confinement was not improved.

Flux-gradient relation ~Momentum transport~

<u>The slope in the flux-gradient relation -> μ_{ϕ} </u>

- > (1) **Decrease of** μ_{ϕ} , (2) Increase of the intrinsic rotation.
- Back to low-confinement branch.
- $P_{\rm r} = \mu_{\phi}/\chi_{\rm i}$ kept unity.

Future Prospect and Summary

Toward quasi-steady-state operation

Strategy of high-T_i operation in the LHD

- > Verification how high T_i is realized.
- Long pulse operations toward a reactor.
- In the He-puffing discharge
- > Steep T_i gradient and reduction of χ_i .
- > $T_{i0} \sim 5$ keV/ 1 sec. was achieved.
- > T_i degradation was considerably smaller.

Summary

Progress of the extension of the high-temperature regime

High-temperature regime was successfully extended due to the upgraded heating system and the optimization of discharge scenario.

High T_i characteristics with ion ITB

- > Centre-peaked T_i and V_{ϕ} , energy-confinement improvement, reduction of χ_i and μ_{ϕ} and the negative E_r were observed.
- Ion thermal transport and momentum transport moved to high confinement branch by the ITB formation.

Future works

- Investigation of the off-diagonal-terms effects.
- > Performance integration of high- T_i , high T_e and long-time sustainment.

ICRF-conditioning effect on the high-*T*_i **discharge**

Before the ICRF conditioning,

> T_{i0} below 6 keV, hollow n_e profile.

After 30 discharges of ICRF conditioning,

Residual pressure significantly decreased,

- -> Decrease of neutral recycling,
- -> Lower $n_{\rm e}$ with the parabolic profile,
- -> $P_{\rm i}/n_{\rm e}$ increased in the plasma core,
- -> T_{i0} exceeding 6 keV.

Toward quasi-steady-state operation

Strategy of high-T_i operation in the LHD

- > Verification how high T_i is realized in helical system.
- Long pulse operations toward the fusion reactor.

In the He-puffing discharge (H/(H+He) ~0.75),

- > Steep T_i gradient and decrease of χ_i .
- > $T_{i0} \sim 5$ keV/ 1 sec. was achieved.
- > T_i degradation was quite smaller.

Newly installed NBI and gyrotrons

Typical time evolution in a carbon pellet discharge

In the C-pellet discharge,

- > T_i and dT_i/dr_{eff} clearly increased in the core -> ion-ITB
- > $T_{\rm e}$ was not improved and $T_{\rm e}/T_{\rm i}$ dropped to 0.5.
- > The energy confinement improved by a factor of 1.5.
- > $n_{\rm e}$ fluctuation significantly suppressed.
- > χ_i reduced in the entire region.
- > The improved confinement was transient.

Behavior of *E_r* and turbulence in high-*T_i* plasmas

- > Negative E_r was formed in the core and was gradually decreased with T_i degradation.
- > $n_{\rm e}$ fluctuation started to increase from the peripheral region to the core.
- \succ **T**_i also decreased from the edge.

Recovery of T_i by an additional impurity pellet

Additional C pellet was injected in the *T_i* degradation phase

- > Increase of V_{ϕ} was not observed but the time constant of the degradation became longer.
- > Clear recovery of T_i and grad T_i .

Impurity effect is one of the candidate for the confinement improvement due to the suppression of turbulence.

Intensity of Carbon CX-emm. line [a.u.] 22/16

2nd pellet reference #106452

2nd pellet #106455

24/16

Quasi steady state_#111366

Temporal change of Zeff

IDA K. et al., "Dynamics of ion internal transport barrier in LHD heliotron and JT-60U tokamak plasmas", Nucl. Fusion, **49** (2009) 095024.

TASK3D for quasi-steady-state plasma

1

n

0

0.2

0.4

0.6

r /*a* 99

1

0

0

0.2

0.4

0.6

r /*a* 99

0.8

1

0

0

0.2

0.4

0.6

r /a

0.8

0.8

TASK3D for C-pellet discharges -> in progress

Time-transient $P_{\rm NB}$ was evaluated taking account of $E_{\rm C}$ and $\tau_{\rm se}$.

- Temporal change of the energy of the beam particle, which is produced every 0.1 ms, was calculated.
- > Plasma is heated by the particles with $E > T_i(T_e)$.
- ➤ Heating contribution of the particles at *t* = *t_j* was calculated and the temporal *P*_{NB} was evaluated from the summation of $\Delta E = E_i - E_{i+1}$.

$$E_{j+1} = \left(E_j^{3/2} \exp\left(-\frac{3\Delta t}{\tau_{se}}\right) - E_c^{3/2} \left(1 - \exp\left(-\frac{3\Delta t}{\tau_{se}}\right)\right) \right)^{2/3}$$

High-power gyrotron has been successfully developed

Output power of 1.8 MW was obtained for one second in

a 77 GHz-gyrotron, which was developed in collaboration with University of Tsukuba.

tron 29/16