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Outline 

1. Extension of High-Temperature Regime in the LHD 

 - Upgraded heating property and the new scenario 

  with ICRF-wall conditioning 

2. Characteristics of High-Ti Plasmas with ion ITB 

 - Centre-peaked Ti, reduction of ci, energy-confinement improvement,  

  and the negative Er formation 

3. Dynamic Transport Analyses for High-Ti Plasmas 

 - Temporal change of the heat/momentum-transport state 

4. Future Prospect 

 - Toward the quasi steady state operation 

5. Summary 
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Extension of High-

Temperature Regime with 

Upgrade Heating Property 

3/16 



Achievement of Ti = 7 keV 

4/16 

 Installation of a new perp. NBI (6 MW/40 keV). 

 New operation with ICRF wall conditioning. 

 -> ne profile: hollow -> flat/parabolic,  

 -> Increase of Pi/ne in the core, -> Ti0 of 7 keV. 

 High Ti regime has been extended.  
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Extension of high-Te regime 
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(1) Achieved highest temperature -> Te0 = 20 keV (ne_fir = 0.20x1019 m-3). 

(2) High density condition, 

 -> Te0 = 8.7 keV (ne_fir = 1.1x1019 m-3), Te0 =  1.3 keV (ne_fir = 5.4x1019 m-3). 

 Since 2007, Gyrotron x3 (Over 1 MW each/ 77 GHz). 

 Increase of PECH -> Extension of high Te regime. 
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Characteristics of High-Ti 

Plasmas with Ion ITB 
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Typical time evolution in a carbon pellet discharge 
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In the C-pellet discharge, 

 Ti and dTi/dreff increased in the core -> ion-ITB 

 Te was not improved -> Te/Ti dropped to 0.5. 

 The energy confinement improved by a factor of 1.5. 

 ci reduced in the entire region. 

 The improved confinement was transient. 
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Relation between grad-Ti and Vf shear 
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 Centre-peaked profile of Vf was formed. 

 Vf shear clearly increased with increase of Ti gradient. 
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Radial electric field in ion ITB plasma 
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 Huge if Er = 0. 

 Significantly reduced due to Er. 

Er was measured using HIBP, 

 Low Ti -> Er ~0 

 Ion ITB -> Negative Er  grad Ti 
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Dynamic Transport Analyses 

for High-Ti Plasmas 
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Temporal change of ci and mf 
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 Temporal behaviour of ci  

Plasma Core -> Slow change, great decrease. 

Peripheral -> Fast change, small decrease.  

 Toroidal-momentum transport was also improved. 
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Flux-gradient relation ~Heat transport~ 
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The slope in the flux-gradient relation -> ci, ce 

 Improvement of the Ion-heat transport -> Back to low confinement branch.  

 The electron-heat confinement was not improved. 
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Flux-gradient relation ~Momentum transport~ 
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The slope in the flux-gradient relation -> mf 

 (1) Decrease of mf , (2) Increase of the intrinsic rotation. 

 Back to low-confinement branch. 

 Pr = mf/ci kept unity. 
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Future Prospect 

and Summary 
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Toward quasi-steady-state operation 
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Strategy of high-Ti operation in the LHD 

 Verification how high Ti is realized. 

 Long pulse operations toward a reactor. 

In the He-puffing discharge 

 Steep Ti gradient and reduction of ci. 

 Ti0 ~5 keV/ 1 sec. was achieved. 

 Ti degradation was considerably smaller. 
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Summary 
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High Ti characteristics with ion ITB 

 Investigation of the off-diagonal-terms 

effects. 

 Performance integration of high-Ti, 

high Te and long-time sustainment. 

 Centre-peaked Ti and Vf, energy-confinement improvement , reduction of ci and mf 

and the negative Er were observed. 

Progress of the extension of the high-temperature regime 

Future works 

 High-temperature regime was successfully extended due to the upgraded heating 

system and the optimization of discharge scenario. 

 Ion thermal transport and momentum 

transport moved to high confinement 

branch by the ITB formation. 
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ICRF-conditioning effect on the high-Ti discharge 
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Main discharge

Before the ICRF conditioning,  

  Ti0  below 6 keV, hollow ne profile. 

 

After 30 discharges of ICRF conditioning, 

  Residual pressure significantly decreased, 

 -> Decrease of neutral recycling, 

 -> Lower ne with the parabolic profile, 

 -> Pi/ne increased in the plasma core, 

 -> Ti0  exceeding 6 keV. 
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Toward quasi-steady-state operation 
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Strategy of high-Ti operation in the LHD 

  Verification how high Ti is realized in helical system. 

  Long pulse operations toward the fusion reactor. 

In the He-puffing discharge (H/(H+He) ~0.75), 

  Steep Ti gradient and decrease of ci. 

  Ti0 ~5 keV/ 1 sec. was achieved. 

  Ti degradation was quite smaller. 
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Newly installed NBI and gyrotrons 

New NBI, 

Positive, perp. 

6 MW/ 40 keV 

Negative, 

tang. 

6 MW/ 

180 keV 

Negative, tang. 

5 MW/ 180 keV Positive, perp. 

6 MW/ 40 keV 

Negative, tang. 

5 MW/ 180 keV 

77 GHz gyrotron 

Over 1 MW 

 Recent upgrade of heating system: 

Since 2007, Gyrotron x3 (Over 1 MW each/ 77 GHz) 

2010, Perpendicular NBI (6 MW/ 40 keV) 

 Total PT power, NBI: 28 MW, ECRH: 3.7 MW 

History of total injection 

power to LHD 
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Typical time evolution in a carbon pellet discharge 

In the C-pellet discharge, 

  Ti and dTi/dreff clearly increased in the core -> ion-ITB 

  Te was not improved and Te/Ti dropped to 0.5. 

  The energy confinement improved by a factor of 1.5. 

  ne fluctuation significantly suppressed. 

  ci reduced in the entire region. 

  The improved confinement was transient. 

20/16 



Behavior of Er and turbulence in high-Ti plasmas 

  Negative Er was formed in the core and was gradually decreased with Ti degradation. 

  ne fluctuation started to increase from the peripheral region to the core. 

  Ti also decreased from the edge. 
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  The difference of the time constant of Ti change is 

considered to form the steep Ti gradient in the core.  

1

10

T
i [

k
e
V

]

r
eff

/a
99

0.07

0.95

0.84

0.70

0.55
0.34
0.24

#101911

Not measurable 

21/16 



Recovery of Ti by an additional impurity pellet 
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Additional C pellet was injected in the Ti degradation phase 

  Increase of Vf was not observed but the time constant of the 

degradation became longer. 

  Clear recovery of Ti and grad Ti. 
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Impurity effect is one of the candidate for the confinement 

improvement due to the suppression of turbulence. 
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2nd pellet reference #106452 
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2nd pellet #106455 
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Quasi steady state_#111366 

25/16 



Temporal change of Zeff 

 IDA K. et al., “Dynamics of ion internal transport barrier in LHD heliotron and 

JT-60U tokamak plasmas”, Nucl. Fusion, 49 (2009) 095024. 
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TASK3D for quasi-steady-state plasma 

Prediction of achievable temperature PNBI(reff) FIT3D 

TR 

NC DGN/LHD 
+ anomalous modelling 
 ci(reff), ce(reff),  

 

Time evolution of T(reff) 

 achievable temperature profile   

VMEC 
BOOZER 

 survey for “anomalous” modeling  

 Increased accuracy of prediction 

 TASK3D simulation qualitatively 

reconstructed the experimental results. 
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TASK3D for C-pellet discharges -> in progress 

Time-transient PNB was evaluated 

taking account of EC and tse. 

 Temporal change of the energy of the beam particle, 

which is produced every 0.1 ms, was calculated. 

 Plasma is heated by the particles with E > Ti (Te). 

 Heating contribution of the particles at t = tj was 

calculated and the temporal PNB was evaluated from 

the summation of E = Ej-Ej+1. 
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High-power gyrotron has been successfully developed 

 Output power of 1.8 MW was obtained for one second in 

a 77 GHz-gyrotron, which was developed in collaboration with 

University of Tsukuba. 

77 GHz-Gyrotron Stationary operation for 1 sec 
World’s highest output power 

(>1sec) was achieved.  
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