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Outline 

1. Extension of High-Temperature Regime in the LHD 

 - Upgraded heating property and the new scenario 

  with ICRF-wall conditioning 

2. Characteristics of High-Ti Plasmas with ion ITB 

 - Centre-peaked Ti, reduction of ci, energy-confinement improvement,  

  and the negative Er formation 

3. Dynamic Transport Analyses for High-Ti Plasmas 

 - Temporal change of the heat/momentum-transport state 

4. Future Prospect 

 - Toward the quasi steady state operation 

5. Summary 
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Extension of High-

Temperature Regime with 

Upgrade Heating Property 
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Achievement of Ti = 7 keV 

4/16 

 Installation of a new perp. NBI (6 MW/40 keV). 

 New operation with ICRF wall conditioning. 

 -> ne profile: hollow -> flat/parabolic,  

 -> Increase of Pi/ne in the core, -> Ti0 of 7 keV. 

 High Ti regime has been extended.  
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Extension of high-Te regime 
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(1) Achieved highest temperature -> Te0 = 20 keV (ne_fir = 0.20x1019 m-3). 

(2) High density condition, 

 -> Te0 = 8.7 keV (ne_fir = 1.1x1019 m-3), Te0 =  1.3 keV (ne_fir = 5.4x1019 m-3). 

 Since 2007, Gyrotron x3 (Over 1 MW each/ 77 GHz). 

 Increase of PECH -> Extension of high Te regime. 
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Characteristics of High-Ti 

Plasmas with Ion ITB 
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Typical time evolution in a carbon pellet discharge 
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In the C-pellet discharge, 

 Ti and dTi/dreff increased in the core -> ion-ITB 

 Te was not improved -> Te/Ti dropped to 0.5. 

 The energy confinement improved by a factor of 1.5. 

 ci reduced in the entire region. 

 The improved confinement was transient. 
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Relation between grad-Ti and Vf shear 
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 Centre-peaked profile of Vf was formed. 

 Vf shear clearly increased with increase of Ti gradient. 

-100

0

100

200

300

400

0 2 4 6 8 10 12

r
eff

/a
99

 = 0.34

-d
V

f
/d

r e
ff
 [
x
1

0
3
/s

]

(c)

-dT
i
/dr

eff
 [keV/m]

After pell.
injection

Before
pell. injection

0
2
4
6
8

10
12
14

0
2
4
6
8
10
12
14

(a) #101950, r
eff

/a
99

 = 0.34

P
i [

M
W

]

P
i

-d
T

i/d
r e

ff
 [
k
e
V

/m
]

C pellet

0

100

200

300

400

0

1

2

3

4

3.7 3.8 3.9 4 4.1 4.2 4.3-d
V

f
/d

r e
ff
 [
x
1
0

3
/s

]

C pellet

Time [s]

(b)

F
N

B
I [

N
]

F
NBI



Radial electric field in ion ITB plasma 
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 Huge if Er = 0. 

 Significantly reduced due to Er. 

Er was measured using HIBP, 

 Low Ti -> Er ~0 

 Ion ITB -> Negative Er  grad Ti 
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Dynamic Transport Analyses 

for High-Ti Plasmas 
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Temporal change of ci and mf 
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 Temporal behaviour of ci  

Plasma Core -> Slow change, great decrease. 

Peripheral -> Fast change, small decrease.  

 Toroidal-momentum transport was also improved. 
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Flux-gradient relation ~Heat transport~ 

12/16 

The slope in the flux-gradient relation -> ci, ce 

 Improvement of the Ion-heat transport -> Back to low confinement branch.  

 The electron-heat confinement was not improved. 
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Flux-gradient relation ~Momentum transport~ 
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 (1) Decrease of mf , (2) Increase of the intrinsic rotation. 

 Back to low-confinement branch. 

 Pr = mf/ci kept unity. 
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Future Prospect 

and Summary 
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Toward quasi-steady-state operation 
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Strategy of high-Ti operation in the LHD 

 Verification how high Ti is realized. 

 Long pulse operations toward a reactor. 

In the He-puffing discharge 

 Steep Ti gradient and reduction of ci. 

 Ti0 ~5 keV/ 1 sec. was achieved. 

 Ti degradation was considerably smaller. 
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Summary 
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High Ti characteristics with ion ITB 

 Investigation of the off-diagonal-terms 

effects. 

 Performance integration of high-Ti, 

high Te and long-time sustainment. 

 Centre-peaked Ti and Vf, energy-confinement improvement , reduction of ci and mf 

and the negative Er were observed. 

Progress of the extension of the high-temperature regime 

Future works 

 High-temperature regime was successfully extended due to the upgraded heating 

system and the optimization of discharge scenario. 

 Ion thermal transport and momentum 

transport moved to high confinement 

branch by the ITB formation. 
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ICRF-conditioning effect on the high-Ti discharge 
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Main discharge

Before the ICRF conditioning,  

  Ti0  below 6 keV, hollow ne profile. 

 

After 30 discharges of ICRF conditioning, 

  Residual pressure significantly decreased, 

 -> Decrease of neutral recycling, 

 -> Lower ne with the parabolic profile, 

 -> Pi/ne increased in the plasma core, 

 -> Ti0  exceeding 6 keV. 
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Toward quasi-steady-state operation 

0

1

n
e

[x
1
0

1
9
 m

-3
]

n
e

H/(H+He)(a) #111366

0

1

2

3

4

5

6

7

4.2 4.4 4.6 4.8 5 5.2 5.4

T
i0
, 
T

e
0
 [
k
e
V

]

Time [s]

(b)

T
i0

T
i0

T
e0

0

1

2

3

4

5

6

7

8

0 0.2 0.4 0.6 0.8 1

r
eff

/a
99

(a) T
i
 [keV]

L mode

ITB, C pellet

ITB,
He puff

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

r
eff

/a
99

(b) c
i
 [m

2
/s]

L mode

ITB, C pellet

ITB, He puff

0

2

4

6

8

0 0.2 0.4 0.6 0.8 1

T
i0
, 


T

i0
 [
k
e
V

]


Sustainment time [s]

T
i0
, C pellet



T
i0
, He puff



T
i0
, C pellet

T
i0
, He puff

(c)

Strategy of high-Ti operation in the LHD 

  Verification how high Ti is realized in helical system. 

  Long pulse operations toward the fusion reactor. 

In the He-puffing discharge (H/(H+He) ~0.75), 

  Steep Ti gradient and decrease of ci. 

  Ti0 ~5 keV/ 1 sec. was achieved. 

  Ti degradation was quite smaller. 
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Newly installed NBI and gyrotrons 

New NBI, 

Positive, perp. 

6 MW/ 40 keV 

Negative, 

tang. 

6 MW/ 

180 keV 

Negative, tang. 

5 MW/ 180 keV Positive, perp. 

6 MW/ 40 keV 

Negative, tang. 

5 MW/ 180 keV 

77 GHz gyrotron 

Over 1 MW 

 Recent upgrade of heating system: 

Since 2007, Gyrotron x3 (Over 1 MW each/ 77 GHz) 

2010, Perpendicular NBI (6 MW/ 40 keV) 

 Total PT power, NBI: 28 MW, ECRH: 3.7 MW 

History of total injection 

power to LHD 
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Typical time evolution in a carbon pellet discharge 

In the C-pellet discharge, 

  Ti and dTi/dreff clearly increased in the core -> ion-ITB 

  Te was not improved and Te/Ti dropped to 0.5. 

  The energy confinement improved by a factor of 1.5. 

  ne fluctuation significantly suppressed. 

  ci reduced in the entire region. 

  The improved confinement was transient. 
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Behavior of Er and turbulence in high-Ti plasmas 

  Negative Er was formed in the core and was gradually decreased with Ti degradation. 

  ne fluctuation started to increase from the peripheral region to the core. 

  Ti also decreased from the edge. 
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Recovery of Ti by an additional impurity pellet 
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Additional C pellet was injected in the Ti degradation phase 

  Increase of Vf was not observed but the time constant of the 

degradation became longer. 

  Clear recovery of Ti and grad Ti. 
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Impurity effect is one of the candidate for the confinement 

improvement due to the suppression of turbulence. 
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2nd pellet reference #106452 
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2nd pellet #106455 
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Quasi steady state_#111366 
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Temporal change of Zeff 

 IDA K. et al., “Dynamics of ion internal transport barrier in LHD heliotron and 

JT-60U tokamak plasmas”, Nucl. Fusion, 49 (2009) 095024. 
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TASK3D for quasi-steady-state plasma 

Prediction of achievable temperature PNBI(reff) FIT3D 

TR 

NC DGN/LHD 
+ anomalous modelling 
 ci(reff), ce(reff),  

 

Time evolution of T(reff) 

 achievable temperature profile   

VMEC 
BOOZER 

 survey for “anomalous” modeling  

 Increased accuracy of prediction 

 TASK3D simulation qualitatively 

reconstructed the experimental results. 
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TASK3D for C-pellet discharges -> in progress 

Time-transient PNB was evaluated 

taking account of EC and tse. 

 Temporal change of the energy of the beam particle, 

which is produced every 0.1 ms, was calculated. 

 Plasma is heated by the particles with E > Ti (Te). 

 Heating contribution of the particles at t = tj was 

calculated and the temporal PNB was evaluated from 

the summation of E = Ej-Ej+1. 
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High-power gyrotron has been successfully developed 

 Output power of 1.8 MW was obtained for one second in 

a 77 GHz-gyrotron, which was developed in collaboration with 

University of Tsukuba. 

77 GHz-Gyrotron Stationary operation for 1 sec 
World’s highest output power 

(>1sec) was achieved.  
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