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) Motivation and Overview W

ASDEX Upgrade

* Tokamak transportis turbulence dominated

* Turbulent channels (energy, particle, momentum) are
intricately connected

* No theory of tokamak transport complete without
understanding and inclusion of these interactions

e In this talk: Consistent connections between turbulence
driven particle and momentum transport observed in
* Intrinsic rotation database

* Rotation changes across linear to saturated Ohmic
confinement (LOC-SOC) regime

e NBI H-modes + ECRH Power




@ Intrinsic Vcp measured via W

e non-perturbative NBI blips
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@ Intrinsic Vcp measured via W

st non-perturbative NBI blips
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3 Near perfect correlation of core Mach W
=uwee  with mid-radius rotation gradient

* Rotation database developed
using NBI blip technique

e Ohmic L-mode and ECRH
and ICRH L- and H-mode

plasmas

* Core Mach strongly correlated
(94%) with normalized V
gradient at mid-radius, U’

 Correlation holds for ALL cases
regardless of confinement or

heating method
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J U’ correlates best with R/L_,

* Normalized rotation gradient
Correlates best with R/L_. (70%)
* Peaked density < hollow rotation

* Flat density < peaked rotation
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@ Database suggests connection between

s momentum and particle transport

* Normalized rotation gradient
Correlates best with R/L_. (70%)
* Peaked density < hollow rotation

* Flat density < peaked rotation

U’ and R/L,, show opposing non-
monotonic dependence on v

U — ei
Y C.JR

e Minimum in Mach and maximum in
R/L, . occur at same v

* Connection between particle and
momentum transport
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3 Particle transport consistent with W

" heoretical predictions
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heoretical pr

* Robust explanation for R/L,,

* Maximal R/L, , in TEM regime near
ITG/TEM border

* R/L,. increase with g4 predicted

due to increase in magnetic shear
(TEM)

Database consistent with theoretical
turbulent particle transport

* Magnetic shear trend also
reproduced

Fable, PPCF 52 015007 2010, Angioni, ef a/ PRL 107 215003 (2011)
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@ Hollow rotation occurs with strong R/L_, W

* Negative u’ (hollow
profile) occurs concurrent
with strong R/L__and
leads to cntr-current
rotation in the core

* Strong R/L . occurs
near [TG/TEM
boundary

Angioni, ef al PRL 107 215003 (2011)



@ Rotation reversals observed within W

i individual discharges
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@ Double Ve reversal connected to R/L_, W

ASDEX Upgrade
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* Connection between energy confinement, intrinsic rotation, and
turbulent particle transport!

* Double reversal of rotation with correlates with R/L,_ behavior
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Core V linked to mid-radius behavior W

* Rotation 0<p <0.4 changes occurs simultaneously
* Time resolution (300ms)
* R/L,, at mid-radius evolves before/during LOC-SOC transition

* v also increasing with time
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Multi-variable regression indicates W
e R/Lye, Vegs, & R/Ly
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e AUG NBI H-modes ITG dominated

* Sufficient ECRH increases T, - turbulence
regime switches to TEM

* Turbulence change causes n, peaking

e Rotation flattens and can become hollow

* Qualitatively consistent with intrinsic
rotation database observations!

* Requires transport analysis to confirm
presence of residual stress torque

For more details: Angioni, TH/P2-21

McDermott PPCF 53 035007, 2011, McDermott PPCF 53 124013, 2011

@ Similar behavior seen in NBI H-modes W
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Transport analysis indicates presence of RS
nitude as NBI!

External
torque
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Intrinsic
torques

Vel | =0

Convection

e Diffusive flux ~ 0 due to VVcp ~0
e NBI and convection both inward

* Counter-current [l needed to
explain rotation profiles

* Same order of magnitude as torque
from 1-2NBI sources!
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@ Size of residual stress scales with R/L_. W

ASDEX Upgrade

* Momentum transport equation in intrinsic scenarios:
Lpg + x,u + RV u=0

 [f convection contribution is small expect residual stress to shown
similar dependenciestou’ 2> [soc R/L, .

* TestI'ycdependence using local linear gyrokinetic simulations (GS2)
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Residual stress and intrinsic rotation W

. calculation dominated by R/L_.
Sos[
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* Quantitative agreement of u’ with 8,=-0.3 rad for TEM data points
* ITG points fit best to -0.15rad

* Combination ExB (same tilt direction for both ITG & TEM) and
profile shearing (tilt direction opposite for ITG & TEM)




J Consistent story W
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* ITG to TEM turbulence regime

* peaked n, profiles

* Increased residual stress momentum flux (cntr-current torque)

* Cntr-current rotation gradient and hollow rotation profile
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» Summary and Conclusions W

ASDEX Upgrade

* Connection between turbulent particle and momentum transport

* Hollow V| profiles (counter-current directed residual stress torque)
occur only with strong R/L_ ., which occurs near the ITG-TEM boundary

 Observed in intrinsic rotation database, Ohmic L-modes across LOC-
SOC, and NBI H-modes with ECRH power

* Predicted u’ from linear gyro-kinetic calculations with constant tilting
angle dominated by I'y;,which shows strong dependence on R/L_,

* Quantitative agreement for TEM dataset with -0.3rad tilt angle & ITG
with -0.15rad

* Combination of ExB and profile shearing qualitatively consistent

* Next step non-linear simulations to confirm 'y results
* Expansion of AUG database to wider range of topologies and parameters
* Inter-machine intrinsic V,, comparison using same analysis techniques




