Impact of carbon and tungsten as divertor target materials on the SOL conditions in JET

Mathias Groth et al.

24th IAEA Fusion Energy Conference, 8-13 October, San Diego, USA

M Groth¹, S Brezinsek², P Belo³, M N A Beurskens⁴, M Brix⁴, M Clever², J W Coenen², G. Corrigan⁴, T Eich⁵, M J Flanagan⁵, D Harting², C Giroud⁴, C Guillemaut⁶, A Huber², S Jachmich⁷, M Lehnen², C Lowry⁸, C F Maggi⁵, S Marsen⁹, A G Meigs⁴, R A Pitts¹⁰, G. Sergienko², B Sieglin⁵, C Silva³, A Sirinelli⁴, M F Stamp⁴, G J van Rooij¹¹, S Wiesen² and JET EFDA contributors*

JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB, UK

¹Aalto University, Association EURATOM-Tekes, Espoo, Finland.
²Institute for Energy and Climate Research, Association EURATOM-FZJ Jülich, Germany.
³Institute of Plasmas and Nuclear Fusion, Association EURATOM-IST, Lisbon, Portugal
⁴Culham Centre of Fusion Energy, EURATOM association Culham Science Centre, Abingdon, UK
⁵Max-Planck-Institute for Plasma Physics, EURATOM association, Garching, Germany.
⁶Association Euratom CEA, CEA/DSM/IRFM, Cadarache, France.
⁷Association "EURATOM Belgium State", Laboratory for Plasma Physics, Brussels, Belgium.
⁸EFDA Close Support Unit, Culham Science Centre, Abingdon, UK.
⁹Max-Planck-Institute for Plasma Physics, EURATOM association, Greifswald, Germany.
¹⁰ITER Organisation, 13115 Saint-Paul-Lez-Durance, France.
¹¹FOM Institute DIFFER, Association EURATOM-FOM, Nieuwegein, The Netherlands.

* See the Appendix of F. Romanelli et al., 24th IAEA Fusion Energy Conference 2012, San Diego, USA

How does scrape-off layer plasma change when going from C to Be/W in JET?

Transition of JET-C to JET ILW (Be/W) in one single
 shutdown ⇒ anticipate
 decrease of radiated power in
 SOL ⇒ increase in conducted
 power to plates + higher
 divertor plasma temperatures

How does scrape-off layer plasma change when going from C to Be/W in JET?

- Transition of JET-C to JET-ILW (Be/W) in one single shutdown ⇒ anticipate decrease of radiated power in SOL ⇒ increase in conducted power to plates + higher divertor plasma temperatures
- Comparison of measured powers, currents, and temperatures in attached and detached L-mode plasmas in JET-C and JET-ILW ⇒ onset of detachment and density limit at 30% higher n_{up} in JET-ILW
- Rollover of ion currents to LFS plate (~ momentum detachment) successfully observed with fluid edge code EDGE2D/EIRENE

The SOL conditions were characterised in neutral beam-heated L-mode plasmas

- Configuration optimised for diagnosis of LFS strike zone
- Varied core/SOL density by D₂ fuelling ⇒ low and high recycling divertor conditions in JET-C and JET-ILW
 - Fully detached conditions in JET-ILW

The SOL parameters were measured with a comprehensive suite of diagnostics

- 2D profiles of total radiation \rightarrow P_{rad,SOL} and P_{rad,div}
- Target power and particles fluxes $\rightarrow P_{div}$ and I_{div}
- Principal scaling parameter upstream density, n_{up}
 - Spatially resolved profiles of n_e and T_e upstream $\rightarrow n_{e,sep}$

EFFER In going from JET-C to JET-ILW, the radiation in the divertor decreased by 30%

- Decrease qualitatively consistent with reduction of C radiation in the SOL by order of magnitude*
 - Cleaner plasmas: Z_{eff} decreased from 1.4 to 1.1

*Brezinsek et al., PSI2012 Coenen et al., EX/P5-04

In going from JET-C to JET-ILW, power to LFS plate increased by 2x

- Decrease qualitatively consistent with reduction of C radiation in the SOL by order of magnitude*
 - Cleaner plasmas: Z_{eff} decreased from 1.4 to 1.1

- Increase of P_{div,LFS} by ~2x in high-recycling conditions
 - Similar P_{div,LFS} in low-recycling conditions

In going from JET-C to JET-ILW, peak T_e at LFS plate increased by 2x

- Decrease qualitatively consistent with reduction of C radiation in the SOL by order of magnitude*
 - Cleaner plasmas: Z_{eff} decreased from 1.4 to 1.1

- Increase of P_{div,LFS} by ~2x in high-recycling conditions
 - Similar P_{div,LFS} in low-recycling conditions
- Increase of T_e at LFS plate by ~2x in high-recycling conditions

In attached conditions, I_{div} to the plates are similar within 50% in JET-C and JET-ILW

- Rollover of I_{div} at the HFS and LFS plates occurred at the same n_{up}
- Drop in T_{e,peak,LFS} occurred at distinctly (20%) lower n_{up} than I_{div,LFS}
- ⇒ Significant operational space beyond rollover ⇒ stable and wellcontrollable detachment for n_{up} up to 1.5 x n_{up,rollover}

Detached SOL regimes were investigated in almost the same divertor plasma configuration

- High-triangularity configuration: lower magnetic clearance to top of vessel
- Continuous fuelling ramp to density limit starting slightly below rollover of I_{div}

Rollover of I_{div} occurred at 30% higher n_{up} in JET-IWL than in JET-C

- Rollover occurred for same n_{up} at HFS and LFS plate
 - Radiative power fraction ~40% at I_{div} rollover in both materials configurations

EFFER Significantly stronger reduction of I_{div} at the LFS plate in the JET-ILW than in JET-C

- Rollover occurred for same n_{up} at HFS and LFS plate
 - Radiative power fraction ~40%
 at I_{div} rollover in both materials
 configurations
- In JET-C, flat I_{div,LFS} for n_{up} > n_{up,rollover} ⇒ 25% reduction at density limit only

Operation in more stable detached conditions in the JET-ILW than in JET-C

- Rollover occurred for same n_{up} at HFS and LFS plate
 - Radiative power fraction ~40%
 at I_{div} rollover in both materials
 configurations
- In JET-C, flat I_{div,LFS} for n_{up} > n_{up,rollover} ⇒ 25% reduction at density limit only
- Density limit 30% higher in JET-ILW than in JET-C*

*Huber et al., PSI2012

FIG Are predictions from edge fluid codes consistent with the experimental data?

- EDGE2D/EIRENE = coupled fluid plasma/Monte-Carlo neutral code, including deuterium molecules and their radicals
- Adapted actual C and Be/W walls ⇒ physical sputtering (Eckstein yields) and chemical sputtering (C only, Roth 2004 yields)
- Output: D + impurity radiation, target fluxes and plasma conditions

Performed fuelling scan utilising measured upstream conditions for n_e and T_e

- Identical profiles of n_{e} (and T_{e}) were obtained in JET-C and JET-ILW
- Assumed diffusive model w/ transport barrier in D₁, step for χ_{e_1}
- Omit cross-field drifts \Rightarrow focus comparison on LFS plate

In going from JET-C to JET-ILW, a 50% reduction in $P_{rad,SOL}$ is predicted (c.f. exp: 30%)

- Reduction of P_{rad,SOL} due to lower radiation from Be:
 - $P_{rad,Be} \sim 1/4 \times P_{rad,C}$
 - Similar P_{rad,SOL} from deuterium
- P_{rad,W} negligible for highrecycling / detached conditions

*Kotov et al., PPCF 2008 Guillemaut et al., PSI 2012

- Extended EIRENE includes collisions between ions and D₂ molecules / radicals, and T_e and n_e dependent radiative rates*
- Density limit shifted to ~20% higher n_{up}
- Rollover is predicted to occur at the same n_{up} for both JET-C and JET-ILW (c.f. exps: at ~30% n_{up} higher in JET-ILW)

P_{core→ped} dependence is too weak to explain discrepancies in P_{rad}

Simulations are within 50% of the measured P_{div} to LFS plate in attached conditions

EFFER Simulations are within 50% of the measured P_{div} to LFS plate in attached conditions

- Predicted rollover more shallow for JET-C than for JET-ILW, as observed experimentally
- Rollover of I_{div,LFS} only obtained when including collisions of plasma ions with deuterium molecules / radicals + n_e and T_e dependent collisional radiative model (Guillemaut et al., PSI 2012)

Simulations predict T_e at the separatrix on LFS plate to drop to 2 eV before rollover of I_{div}

Conclusions

- In high-recycling and detached L-mode
 plasmas, P_{rad,SOL} is 30% lower in JET-ILW
 than in JET-C ⇒ increase in P_{div}
- Onset of detachment and density limit occurs at 30% higher n_{up} in JET-ILW ⇒ wide detachment window: n_{DL} ≈ 1.5 x n_{rollover}
- Detachment of HFS and LFS legs at same n_{up}

Conclusions

- In high-recycling and detached L-mode
 plasmas, P_{rad,SOL} is 30% lower in JET-ILW
 than in JET-C ⇒ increase in P_{div}
- Onset of detachment and density limit occurs at 30% higher n_{up} in JET-ILW ⇒ wide detachment window: n_{DL} ≈ 1.5 x n_{rollover}
- Detachment of HFS and LFS legs at same n_{up}
- Rollover of I_{div} to LFS plate achieved in EDGE2D/EIRENE simulations when extending neutral model
 - Physics likely to play a role in simulating Hmode plasmas ⇒ assessment for ITER divertor plasmas ongoing

- J. Coenen et al., "Long-term Evolution of the Impurity Composition and Impurity Events with the ITER-like Wall at JET", EX/P5-04
- G. van Rooij et al., "Characterization of Tungsten Sputtering in the JET divertor", EX/P5-05
- C. Giroud et al., "Nitrogen seeding for heat load control in JET ELMy H-mode plasmas and its compatibility with ILW materials", EX/P5-30
- E. Joffrin et al., "Scenario development at JET with the new ITERlike wall", EX/4-3

Backup slides

Discernable difference in radiation pattern in high-recycling conditions

M. Groth / 24th IAEA Fusion Energy Conference / San Diego / 8.-13. October 2012

Almost identical D_α emission was measured across LFS plate, consistent with I_{div,LFS}

 Significantly higher D_α emission in HFS divertor in JET-C, indicative of lower T_e in HFS divertor

- Identical subdivertor pressures despite elevated height of LFS plate in JET-ILW \Rightarrow consistent with I_{div,LFS} and D_{α ,LFS}
- In THESE plasmas, D₂ input was about 2-3 times lower in JET-ILW to achieve same line-averaged edge density

- Reduction in CIII emission (photomultiplier) across LFS divertor leg is consistent with CII measurements using divertor spectrometer (Brezinsek et al., PSI 2012)
- Factor of 2 3 reduction of CIII across HFS divertor leg only

Tungsten plays an insignificant role in these L-mode plasmas

- c_W dropped from 5x10⁻⁶ in low-recycling conditions to below 1x10⁻⁶ when detached
- Contribution of W radiation to total radiation in the main chamber is max. 20%

Guillemaut et al., PSI2012

JET-ILW

