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The JET programme in support of ITER has

started the exploitation phase

DT
integrated
experiment

ITER-like
wall
experiment

Plasma scenario%
in ITER
configuration

Plasma scenario
compatibility

[J. Paméla, Fusion Eng. Des. 82 (2007) 590]
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JET is now equipped with the same combination of
materials as ITER, up to 34MW of NB power and
improved diagnostic and control tools.
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» Operation of JET with the ITER-like
wall (ILW)
* Fuel retention
* Plasma breakdown
* Impurity content
* Disruptions
« PFCs power handling and protection
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Fuel Retention with the ILW is in line with

the ITER requirements

 Measured fuel retention P | |

is more than an order of 1| T W (wiharoopumg) H-mode

. . . [ JILW (NBI & long outgasing) H-mode type |

magnitude lower with | e type Il
the ILW, consistent with

predictions made before

the wall was installed.

N
o
N
=
]

—
(@)
)
o
]

retention rate [D/s]
normalised to divertor time

 Residual retention
consistent with co -
deposition in Be layers. 10~

gas balances with different conditions

[Brezinsek, EX/4-1]
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Better wall conditions with the ILW lead to

more robust plasma breakdown

« 1MA/15s plasmas established at the o0 .
first attempt during the 2011 restart. 05 oy + Garbon wal
' .“z e C failed breakdown
. * [ 1) :’.“
* Non assisted breakdown demonstrated £ o4- a0,
down to 0.35V/m (ITER value). 3 w
8 03 wfl |
* Lower radiation level at higher density § 0 xR
achieved making the breakdown more ¢
robust. 0.1 .
« Unlike the C-wall, no de-conditioning 0 “ LE 70 5
event following disruptions have been e integrated density (107 m™)
observed with the ILW. No need for
GDC or Be evaporation during
operation [de Vries, EX/4-2]
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ILW plasmas exhibit lower Z_ than

C-wall plasmas

CFC: #76678, ILW: #82806 | * H-mode plasmas typically have Z_; ~
1.2-1.4

2
-PNBI ]
10 HMW] _
- P e [MW] { « Carbon concentration decreased by a
0 . .

—— factor 20. Beryllium now the dominant
<ne> [x10%'m™] intrinsic impurity.

, | . L Beryllium and tungsten erosion are
7« | | "1 consistent with physical sputtering

2.0 -
1.4} ﬂ\m ! » Inner/outer divertor legs detach at the

same upstream density and 30% below
10 15 time (5)20 25 the L-mode density limit.

[Groth, TH/3-1]

[Mayoral, EX/4-3]

[Puetterich, EX/P3-15]

[Coenen, EX/P5-4] [van Rooij, EX/P5-5]

» Higher W concentration observed with
ICRH but sources not yet identified
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Massive gas injection required to mitigate

disruptions with the ILW

« The dynamics of disruptions are very different with the ILW
> Higher plasma purity — lower radiation during disruption
— slower current quench
— higher heat loads and halo currents
— higher reaction forces on the vessel

12 . 1.0
mILW 100%."  (a) B C PFC (@)
mCFC ® LW

101~ R
0.8

Normalised reaction force F \/l,2 (MN/MA?)

0.6

Erad (MJ)

0.4

0.2~

0 | | | | |
0 1 2 3 4 5

Emag * Etherm — Ecoupled (MJ) Normalised impluse (MN ms/MA?)

[Lehnen, EX/9-1, Murari EX/P8-4, Plyusnin EX/P8-5]

o JG12.23-10a
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Massive gas injection required to mitigate

disruptions with the ILW

« Massive gas injection as a disruption mitigation tool is now mandatory for
JET experiments at or above 2.5 MA.

« With the mitigation, the forces and power loads resulting from disruptions
are returned to the level observed with C wall

12 - 1.0
mILW 100%." (b) @ B C PFC (b)
ECFC m ° LW
EILW MGI & o |ILW MGI
10 mC PFC MGl S - S o8- o~
P —@—
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< " egy o
- % 0.6 °
= 5 s = e
3 = o
d 2 o 'Ss MR EE e
S 0.4
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§ [ |
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0 | | | | | %
0 1 2 3 4 5 6
Emag * Etherm — Ecoupled (MJ) Normalised impluse (MN ms/MA?)

[Lehnen, EX/9-1, Murari EX/P8-4, Plyusnin EX/P8-5]
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Component Power Handling have been

confirmed by initial ILW operation

« Careful shaping of the Be limiters
validated

» Details of the measured and
calculated power footprints are
being compared: limiter & plasma
model

> Validation for ITER

 Integrated protection system for
the ILW implemented with CCD IR
cameras covering 66% of the wall
and 43% divertor

« Some local damage to due off- '
normal events and prolonged Experiment Model

heated limiter tests (PFCFLUX)
[Nunes, FTP/2-1Rb]
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EFm Component Power Handling have been
- &F & ~g N

confirmed by initial ILW operation

« Careful shaping of the Be limiters
validated

» Details of the measured and
calculated power footprints are
being compared: limiter & plasma
model

> Validation for ITER

 Integrated protection system for
the ILW implemented with CCD IR
cameras covering 66% of the wall
and 43% divertor

« Some local damage to due off-
normal events and prolonged
heated limiter tests

[Nunes, FTP/2-1Rb]
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W divertor successfully tested

The bulk tungsten divertor is designed for a maximum local temperature of
the plasma-facing tungsten of 2200° C and a maximal energy deposition of
60 MJ/m?

Routine operation
performed at
30MJ/m? and T+
up to 1000° C.

Good agreement
with the model
calculation

F. Romanelli 14 FEC 2012 San Diego 8-13 October 2012



* H-mode physics in an all-metal
environment

 L-H power threshold

« Baseline H-mode scenario
* Hybrid H-mode scenario
 ELM mitigation

F. Romanelli 15 FEC 2012 San Diego 8-13 October 2012



L-H power threshold not consistent with the

ITPA scaling

6Low triangularity, B;=1.8T, I, =1.7MA  With the old C_Wa” Pthr was
0 © Wl consistent with the multi-machine
57 A ICRH A Pt 08 ITPA scaling down to low density.
A ICRH, L-mode . T
4L % NBI L [] e
— L
S 4 % % «  With the ILW Py, is 30% lower at
E gg;@ *A high density while it increases at
il /D[LEH * low density below a critical value
e : s (as with the MkII-GB).
0/, | l e,min | %
0 1 2 3 4 ]
N (107m=?) « Same trend after subtracting

radiation inside the separatrix

[Beurskens, EX/P7-20]
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Establishing stationary H-mode requires

avoiding W accumulation

JET-ILW Pulse No: 81913

10F Prad tot
- Pnai
—~ 8
g [ U
2 ab 4
& )t * [n H-mode, below a certain
; ELM frequency the tungsten
O density peaks in the plasma
3 centre, resulting in a loss of
S sawteeth and a central
g 2 temperature collapse.
|_
1t s
o :

[Joffrin, EX/1-1]
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Stationary H-mode established with the ILW
up to 3.5MA and 27MW

?g *Injected power corresponds to 1.5
3.0 I:)th

';’:g . -Strike point sweeping implemented
80 ‘ to reduced the temperature on the

228 , m bulk tungsten tile (<1200°C)

' Gas x 1022 Df

823 - ) *Strong gas fuelling used to achieve
}g high frequency ELMs and avoid W
11 accumulation.

:,:: *Confinement strongly affected by

04F 7 7.0. " the gas. Hgg~0.7-0.8

[Joffrin, EX/1-1]
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Reduced H-mode confinement is
associated with the edge transport barrier

ILW

e BL lo—d

s ® A BL hi—d
® Hy lo-d
A Hy hi-d

1.0

A
0.8~ A
A C-wall

A“} o BL lo—d
Py A BL hi—d
0.6/ * Hy lo—d
A Hy hi—d

Te, ped/ IP

04

0.2

O JG12.241-15¢

[Joffrin, EX/1-1]
[M. Beurskens, Ex/P7-20]

The reduced confinement is due
to lower pedestal temperatures
with the ILW and is propagated
across the plasma by transport
stiffness

Largest difference in pedestal
properties observed at high 0.

Understanding and improving
these initial results is a priority
for future experiments
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To preserve Hgyg, frequent ELMs and moderate

(MW]

[a.u.]

[1022 D/s]

[10® m?]

[keV]

fuelling must be achieved simultaneously

' . Pulse 82122
128 P 3
E NB
o MW u I ——
4 E
)3 i ; : Par
o6k Divertor recyling (Bell)
0.4F
0.2F
0.0
2.0F
1.0f
0.0 Deuter.ium GaleueIing Bate ‘ \
6 ' ’ ) i . E
A \m
(2) Line-integrated electron density :
3 X E
2 = E
(1) Central eIectron temperature
1.0
0.6F
7 8 9 10 11 12 13
Time (s)
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* When high-frequency Type-|
ELMs are achieved using high
input power (rather than using
high gas fuelling rate)
confinement improves.

i H98~O-9
. f, ~0.9
.« Z . ~12-14

[Joffrin, EX/1-1]

8-13 October 2012




Nitrogen seeding leads to increased

confinement

2.5MA/26-27T6~0.4
i | 1« Nitrogen seeding has been tested

primarily in high 6 configurations

1.2 -

1 * Increased pedestal temperature &
density, decreased ELM frequency

S
2 08+ .
g lead to increased confinement!
=k -
0.4 1 ¢ This effect not observed in low §
JET-C fuelled only
~ OJET-ILW fuelled only Bt
O JET-ILW fuelled + N 3 . . .
) Srmeear e , © + Plasmas still prone to impurity
0 2 4 6 8

N, peq (1079m-2) accumulation.

[Giroud, EX/P5-30]
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EFM To recover Hyg more input power is required

lllllllllllllllllllllllllllllllllllllllllllll

1.5 | -+ Upto~2.5MA, Hyg~1 can be
[ ‘ achieved at P, /P,>2

net
.+ However, input power above

. 30MW could not be used during
: the last Campaigns.

« Up to ~40MW will be used in the
next Campaigns to test whether
_ Hyhis | Hys=1 can be recovered at high
ool o o e e current.
0 1 2 3 4 5

I:)NET/ I:)Th r,08

1.0 -

Hog
|

o
w
\
> o «|ILW
v
—
s
(o]
\

[Beurskens, EX/P7-20]
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Hybrid H-modes have been re-established

with the ILW

JET Pulse N0:83525: 1.7MA /2T
20k - -
Ps (MW) Vel .

- Prap (MW)

C-wall hybrid discharges in

ik P high 0 configurations have
— been transiently

N Bellyg (a.u.) reproduced.
-. |1amiumun;m;HHMLlHhmhlhu T

- nlx (107 m™) [~ ¢ Hgg~1.2-1.3 at f~3
achieved, similar to the

-_’f—LG‘aS X (1022 D/s) C-wall

B Bn~3
I MHD
f * Duration of high

performance phase
typically limited by MHD

-
o
T

PONO—- N WO N A O N A O
I 1

O_L_L
[T T 71
T
©
[e¢]
=
l
| —
N
|
— Y
w
JG12.241-12¢

N
(@) ]
»
~
(00)

[Joffrin, EX/1-1]
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ELM pacing

2.0 MA /22T (qos=3.6), 5,,~0.38, fqu=0.7-0.85

121 e 1+ Vertical kicks: increase in g,
g 4] ") "] [ % R v v ) .

N #83215 | can help in reducing W core

:|l P (

| MW) v accumulation in gas fuelled H-
_Line averaged central ne (10'° m-3)

| .|

mode plasmas in JET with Be/

; W wall
« Planned to be used routinely in
2013

S Kicke=30 H2 = ] « Pellets: ELM sustainment in
% i i baseline scenario — “fuelling
S 1 cem size” from LFS at 15 Hz
I icks=15 Hz - fo, \ can be increased 4.5x
L § ELM X,
£,

13 14 15 16 17 » Good launcher performance,

Time (sec) guide tube improvements
[Lang PD, de la Luna, EX/6-1] planned for 2013

[Liang, EX/P4-23]
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« Conclusions and perspectives
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2013 programme focussed on the support to an
ITER decision on the day-one W divertor

« 2013 JET
Campaigns have the
main goal of

establishing
« Operation after
shallow W melt
events
* Optimization of H-
mode performance

F. Romanelli 26 an Diego 8-13 October 2012




Long term JET plan depend on the success of

the internationalization process*

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Horizon 2020
€ >

EURATOM programme

JET LW +|DT
JT60SA Construction Joint experinients
SD = Shut down Proposed Under further discussion

* see A. Wagner Panel on Strategic Orientation
F. Romanelli 27 FEC 2012 San Diego 8-13 October 2012



Long term JET plan depend on the success of

the internationalization process*

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

ITER

Two further JET enhancements have been studied:
Electron Cyclotron Heating System (ECRH)
Resonant Magnetic Perturbation (RMP) coils

Decision |on Enhanjcement Projects

o
50w 8D | o

Interleaved deuterium, full tritium| trace
tritium and high neutron yield DT\Campaigns

JET ITER preparation with tritium plasmas

JT60SA Construction fo%%sf%';/g%ﬁtg

SD = Shut down Proposed Under further discussion

" Exact duration to be quantified * see A. Wagner Panel on Strategic Orientation
F. Romanelli 28 FEC 2012 San Diego 8-13 October 2012




Long term JET plan depend on the success of
the internationalization process

e

CMptual design starté:

BQ'.
W|th Instltute for Plasma Research India ,
F. Romanelh 29 FEC 2012 San Diego 8-13 0ctober 2012




' The first JET results W|th the ILW have demonstrated
that fuel retention in line with ITER requirements and
good machine conditions are achievable.

The next step is the demonstration of operation after
shallow W melt events and reproducible high-
confinement regimes.

On the longer term a DT Campaign is envisaged.
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