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Outlines 

Non-axisymmetric magnetic 

field perturbations in tokamak 

(RMP coils, toroidal ripples, 

MHD modes, …)  
δ𝐵 𝐵0 = 𝑂(10−3~10−4) 

• Even small perturbation can damp the 

toroidal rotation drastically by 

neoclassical toroidal viscosity (NTV)  

   (in JET, DIII-D, NSTX, …).  
 

• RMP can mitigates ELMs, but toroidal rotation 

is related to other stabilities (RWM, locked 

modes, …).  

• Perturbation field penetration is shielded by 

plasma rotation.  

Accurate calculation method for NTV is required to predict / control the 

effect of magnetic perturbations on NTV and rotation damping. 

 FORTEC-3D 𝛿𝑓 drift-kinetic code is applied to NTV calculations.  

 Verification of the numerical method has been done with Park’s analytic 

formula for 𝐸 × 𝐵 → 0 case. good agreement. (Satake, PRL 2011) 

 

 Here, new benchmark results for the finite-𝐸 × 𝐵 cases are reported. 

 It is found that the magnetic shear and the resonant drift motion of 

passing particles makes a double-peak profile of NTV when 𝑬 × 𝑩 

rotation is fast enough.  



Toroidal rotation is accelerated by the toroidal viscosity                           , 

external torque input      , and the torque of           force. 
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Basic relations for NTV calculations 

●Momentum balance equation  

●Radial particle flux [                                 ] 

Polarization flux Classical flux Momentum input-

driven flux  

: Friction force 

: Momentum input 

(neglected in DKE) 

Radial           flux 

●Neoclassical flux Flux driven by 

toroidal viscosity 

(non-ambipolar) 

(Banana-plateau & Pfirsch-Schluter fluxes) 

              ambipolar 
●Time evolution of toroidal angular momentum 

a: particle species 

Neoclassical flux 
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The      Monte-Carlo method in FORTEC-3D code   

☆ In the present study, the radial electric field profile is given as an input parameter. 

☆ Only ion drift-kinetic equation is solved, and the ion-electron collision is neglected.  

Drift-kinetic equation for                                                     :  

Linearized collision term ( for ion-ion collisions)  

: expressed by random-walk of markers in the            -space. (test-particle operator) 

: defined so that it satisfies the following properties. (field-particle operator) 

(conservation low) 

(null-space) 

The two-weight scheme 

For each marker (distribution function: g), two types of weights are assigned that satisfy : 

 
Each marker moves according to the LHS of the linearized DKE,  

Then, the change of these weights are given as follows : 

 
Noise-reduction terms 

(           → ensemble  average) 
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Evaluation of pressure tensor and NTV in the      simulation  

The guiding-center distribution function : 

Taking an flux surface average  ⇒                                 ,  

where 

Instead of evaluating             directly, we make use of the fact that the magnetic 

field in FORTEC-3D is given in Fourier series in Boozer coordinates.  

Then, the toroidal viscosity is evaluated by decomposing into the following form: 

In this expression, one needs to evaluate only the         components which has 

corresponding non-zero                   perturbations applied.  

Solution of 𝛿𝑓 from 

FORTEC-3D 
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Settings of the numerical simulation model 

Large-aspect-ratio, circular cross-section tokamak  𝑅0 = 10𝑚, 𝑎 = 2.5𝑚, 𝐵0 = 10𝑇  . 

 For simplicity, 𝑇𝑖 = 0.4keV= 𝑐𝑜𝑛𝑠𝑡. Banana width is small,  ∆𝑏/𝑎~10
−3 . 

      Finite-orbit-width effect in FORTEC-3D is negligible when comparing with local theory.    

 Single-helicity perturbation,                                       where 𝑥 = 𝑟 𝑎 , is superimposed on 

the equilibrium tokamak field. 

Plasma collisionality is in the 1 𝜈 -regime, 𝜈∗ ≈ 0.06.  

q-profile is                            .   Resonant flux surface exists at r≒0.49a, where q=7/3. 

 

Dependence of NTV on 𝐸 × 𝐵 rotation speed is investigated by varying the 𝐸𝑟 profile. 

Banana 

Plateau 
Superbanana 

Superbanana-plateau(SBP) 

q=7/3 

Benchmark range  
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Combined analytic NTV theory 

• Including the missing components in conventional bounce-average 

theories: 

– Resonance between bounce motions and electric precession 

– Resonance between magnetic and electric precession (SBP and SB) 

• Do not use assumptions that limits the range of collisionality   (such 

as   , superbanana, etc.) 

• Combined formula for NTV torque has been derived with effective 

Krook collision operator 

[Park et al, PRL102, 065002 (2009)] 

Torque (Transport) Resonance Rotation with offset 

Bounce 

Frequency 𝜔𝑏 

Electric 

Precession 𝜔𝐸 

Magnetic 

Precession 𝜔𝐵 

Collisionality 

𝜈𝐾 

(11) 

(12) 
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Benchmark of NTV : Finite-𝑬𝒓 case 

How are simulations with 𝑬 × 𝑩 rotation compared with theory? 

Park’s formula (      poloidal flux) 

 From the radial force balance relation  

In order to avoid ambiguity coming from approximating                   used in the 

definition of      (            in the            limit), benchmarks are carried out by 

setting                     .                       
 

In FORTEC-3D, an 𝐸𝑟 profile is given from the force balance relation with 

assuming           , e.g.,                       . This 𝑬𝒓 profile is called “the 𝑬𝒓𝟎 case”. 

To see the NTV dependence on 𝑬𝒓, the 𝑬𝒓𝟎 case profile is multiplied by ±1, 

±２, etc. 

 



Though     ( and     ) evolves slowly in a simulation run, it remains small ,                  , 

in the present benchmark calculations.  

The evolution of       does not affect the evaluation of NTV in the simulations even in 

the large-|𝐸𝑟| cases. 

NTV is evaluated by taking time average in the quasi-steady phase after 𝜏𝑖 > 1. 

Total simulation marker number is 3.2 × 107 and the radial mesh points are 240.  

Each run takes about 20 hours on Helios supercomputer. 
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Benchmark of NTV : Finite-𝑬𝒓 case 

Convergence check of the Monte Carlo simulation 

(    : ion collision time )  



 Agreement b/w FORTEC-3D and the 

combined analytic formula at the resonant 

surface when                . 

 

 Even                 , in the off-resonant region 

(r/a>0.6) two calculations agree within 

factor       . 10 

Comparison of the NTV radial profile in Finite-𝑬𝒓 cases 

 Double peaks appear only in FORTEC-3D. 

Peak at the q=7/3 resonant disappears in 

the analytic formula when              is large. 

 

 Distance of the peaks is much larger than 

the banana width, and ∆∝ |𝐸𝑟| 𝐵 . 

|𝐸𝑟| small |𝐸𝑟| large 

∆ 
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NTV Dependence on the 𝑬𝒓 amplitude : 

Total toroidal torque and parallel flow profile 

 The total toroidal torque (NTV integrated on the 

whole volume) is also compared. (fig. (a)) 

 

 The off-resonant region, where FORTEC-3D agrees 

well with the analytic formula, contributes mainly to 

the total torque.    

 Both calculation methods shows the same linear 

dependence of total toroidal viscosity on 𝐸𝑟 𝐸𝑟0 .            
 

 The peak of NTV at 𝐸𝑟~0 is because of the 

resonant of the trapped particles, 𝜔𝐸 + 𝜔𝐵 = 0. 

( 𝐸𝑟 𝐸𝑟0 = −10  case) 

 In FORTEC-3D simulations, parallel (toroidal) 

flow evolves so that it satisfies the force 

balance relation,  

 In large-|𝐸𝑟| cases, 𝑉∥-shear is observed 

around the resonant flux surface (fig.(b)). 

 However, the evolution of the shear flow does 

not affect the double-peak profile of NTV (fig. 

(c)). 

Force-balance flow 
(a) 

(b) 

(c) 
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The origin of the double-peak: 

From the bounce-average analytic formula (𝑇𝑖 = 𝑐𝑜𝑛𝑠𝑡. case): 𝜔𝐸 = 𝑑Φ 𝑑𝜒  :  

          𝐸 × 𝐵 rotation freq. 

𝜔𝑏  : Bounce freq. 

𝜔𝐵  : Magnetic drift freq. 

𝜈𝐾    : Collision freq. 

Strong peak of NTV will occur when 𝑙𝜔𝑏 − 𝑛(𝜔𝐸 + 𝜔𝐵) ≈ 0 is satisfied. (resonance) 
 

 𝑙 = 0 harmonics makes the single peak when |𝐸𝑟/𝐸𝑟0| < 1.  

 𝑙 ≥ 1 harmonics contributions are dominant when |𝐸𝑟| is large.  
𝜔𝑏 ≈ 𝑛𝜔𝐸 can be satisfied by 𝑣~𝑣𝑡ℎ 2  particles at 𝑟 𝑎 ~0.5. 𝐸𝑟

𝐸𝑟0
 = +10 

However, the analytic formula does not 

predict the double-peak profile of NTV. 

Resonance between 𝜔𝐸  and the transit 

frequency  𝜔𝑡𝑟 = 𝑣∥ 𝑞𝑅  of passing 

particles, which is neglected in the 

bounce-average theory, is possible? 

 
Note: 𝜔𝑡𝑟 in the right fig. is evaluated by 𝑣∥ = 𝑣𝑡ℎ. 

Fig: Comparison of the drift frequencies 

and the bounce frequency. 



Passing particle resonance makes the double-peak of NTV (1)  

In FORTEC-3D, NTV is evaluated as follows: 

𝑑𝑄𝑚,𝑛 

on inner-peak surface 

𝜉 = 𝑣∥ 𝑣  

𝑥
=
𝑣

𝑣
𝑡ℎ

 
 

b/w  double peaks 

To see what kind of particles makes the double-peak NTV, the integrand 𝑑𝑄𝑚,𝑛 

in the velocity space 𝑥, 𝜉 = (𝑣 𝑣𝑡ℎ ,  𝑣∥ 𝑣)  at 𝜃 ≅ 0 is observed. 

• In passing region, strong resonant appears on 𝑣∥ = const.  line. 
•The sign of resonant 𝑣∥ is opposite b/w the inner and outer peaks.  

•The sign also changes according to the sign of 𝐸𝑟. 

•When the resonance of 𝑑𝑄𝑚,𝑛 appears at 𝑥 ≈ 1, strong peak of NTV is created 

on that flux surface. 

( 𝐸𝑟 𝐸𝑟0 = −10  case) 

on outer-peak surface 

trapped passing 

13 
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off-resonant surface 

(𝑟 𝑎 = 0.58 ) 

Passing particle resonance makes the double-peak of NTV (2)  

Other evidences: 

𝜉 = 𝑣∥ 𝑣  

𝑥
=
𝑣

𝑣
𝑡ℎ

 
 

On the single-peak surface 

(𝑟 𝑎 = 0.49)  

 𝐸𝑟 𝐸𝑟0 = 0    𝐸𝑟 𝐸𝑟0 = −10   

• When 𝐸𝑟 ≈ 0, the single peak of NTV on the resonant surface (𝑞 = 𝑚 𝑛 ) is created mainly from 

the trapped particles. Passing contribution is non-zero, but small. 

 

• In the off-resonant region (away from the resonant surface), NTV is almost determined by the 

trapped particles.  

 

• The 𝑙 = 0 (𝐸𝑟 ≈ 0) and 𝑙 = 1 (|𝐸𝑟 𝐸𝑟0| ≫ 1 ) type harmonics in the velocity space, which is 

predicted in the analytic theory, can clearly be distinguished in FORTEC-3D simulation, as 

shown in the right two figures.   

The difference between FORTEC-3D and the combined analytic 

formula comes from the passing particles’ resonance when 𝜔𝑡𝑟~𝜔𝐸. 

l=0 harmonics 
l=1 harmonics 

(Bounce motion 

and ExB drift) 
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The passing particle resonance condition 

On the resonant flux surface (𝑟 = 𝑟𝑅) : 𝑞 = 𝑞𝑅 = 𝑚 𝑛 . 

(m,n)  modes of perturbation field 

On 𝑟 = 𝑟𝑅 + 𝛿𝑟, 
𝑞 = 𝑞𝑅 + 𝛿𝑟𝑞

′ 

𝜁 

𝜃 

B field lines 
On 𝑟 = 𝑟𝑅 − 𝛿𝑟 , 

𝑞 = 𝑞𝑅 − 𝛿𝑟𝑞
′ 

𝑣∥ > 0 

𝑣∥ < 0 

𝑉𝐸𝑥𝐵 

Because of the magnetic shear 𝑞′, 
the field lines on the both sides of the 

resonant surface 𝑟 = 𝑟𝑅 tilt as in the 

left figure.  

 If the 𝐸 × 𝐵 drift is large enough and the drift velocity                  for 𝑣 ≈ 𝑣𝑡ℎ  passing 

particles on 𝑟 = 𝑟𝑅 ± 𝛿𝑟 surfaces is aligned with the 𝑞 = 𝑚 𝑛  field lines on the resonant 

surface, such passing particles continuously feel the constant phase of perturbed 

magnetic field, 𝛿𝑚,𝑛 ∝ cos 𝑚𝜃 − 𝑛𝜁 .  

 If such condition is satisfied, the resonant passing particles’ orbits are affected by the 

perturbed magnetic field, resulting in non-ambipolar radial flux and therefore NTV. 

 

 Large 𝑉𝐸×𝐵  Large 𝛿𝑟 is required to satisfy the condition for 𝑣 ≈ 𝑣𝑡ℎ particles. 

     This explains why the distance b/w the double peaks increases with |𝐸𝑟|.  

𝑉𝐸𝑥𝐵 
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Summary 

NTV profile shows significant difference b/w two calculations when |𝐸𝑟/𝐸𝑟0| ≫ 1. In 
FORTEC-3D simulations, a double-peak profile of NTV appears around the resonant 
rational flux surface as |𝐸𝑟/𝐸𝑟0| increases.  
Passing particle resonance, which occurs if magnetic shear 𝑑𝑞 𝑑𝑟  and large 𝐸𝑟 co-

exist near the resonant flux surface, makes a significant contribution to NTV to make 
the double-peak profile. 
The localized double-peak of NTV will also affect the toroidal rotation damping there.  

Future Tasks 

 Investigate the collisionality dependence of NTV when 𝐸𝑟 ≠ 0. 
 Is NTV really scales as                 as asymptotic formula predicts? 

 Include the passing-particle resonance effect in the combined analytic formula. 
 What if the perturbed field makes explicit island structure (the present model is 

vacuum approximation).  
 Use                                   -type expression, for example. 

 Application to helical devices : EX/P3-27 “Transition to Improved Confinement Mode by 

Electrode Biasing in the Large Helical Device” by Kitajima et al. 

 FORTEC-3D code was applied to calculate neoclassical toroidal viscosity 
in  tokamak plasmas with asymmetric magnetic field. 
Benchmark tests were carried out with the combined analytic formula for 
finite-𝑬𝒓 cases . 


