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What are the characteristics and parametric dependencies of pedestal 
turbulence in NSTX?  Can simulations reproduce the observations? 

•  Global confinement predictions for ITER depend upon accurate edge and 
pedestal models 

–  ST edge parameters are among the most challenging regimes for plasma turbulence 
simulations:  steep gradients, large ρ*, high β, strong shaping, strong beam-driven flow 

•  We measure pedestal turbulence parameters in NSTX H-mode plasmas 
during ELM-free, MHD quiescent periods 
–  Poloidal correlation length, wavenumber, and decorrelation time 

–  Identify parametric dependencies (∇ne, ∇Ti, etc) 

•  In addition, we compare measurements to pedestal turbulence 
simulations (GEM and BOUT++) 
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Outline 

•  Beam emission spectroscopy (BES) 
diagnostic on NSTX 

•  Pedestal turbulence measurements 
and parametric dependencies 

– ELM-free, MHD quiescent periods 

•  Fluid and gyrokinetic simulations of 
pedestal turbulence 

•  Future work and summary 
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BES measures Doppler-shifted Dα emission (λ0=656 nm) 
from neutral beam particles 
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The beam emission spectroscopy (BES) system on NSTX 
measures fluctuations on the ion gyroscale 
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•  Presently 32 detection channels 
•  56 sightlines in radial and poloidal arrays 

spanning core to SOL 
•  2 MHz sampling with digital AA filter 
•  k┴ρi ≤ 1.5  &  2-3 cm spot size 
•  Field-aligned optics with high throughput 

(etendue = 2.3 mm2-ster) 
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Point spread function calculations indicate image distortion from 
atomic state lifetimes and field line geometry are negligible 
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We measure poloidal correlation lengths (Lc), poloidal 
wavenumbers (kθ), and decorrelation times (τd) with BES 

7 

•  Filtered data shows eddy propagation 
•  Turbulence quantities calculated from time-lag 

cross-correlations 
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At the LH transition, Lpol increases and kθ decreases 

Also, measurements suggest eddy advection in lab frame 
shifts from electron to ion diamagnetic direction 
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Pedestal measurements show complex turbulence activity 
in H-mode during ELM-free, MHD quiescent periods 
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Questions about pedestal turbulence 
to ask and answer with BES measurements 

•  What are typical Lc, kθ, and τd values in the H-mode 
pedestal during ELM-free, MHD quiescent periods? 

•  How do Lc, kθ, and τd change with plasma parameters? 

– ∇ne, ∇Ti, q/ŝ, νe, βe, nped, etc. 

•  Can we connect observations to edge turbulence 
simulations? 
–  GEM, XGC1 or BOUT++? 
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Pedestal turbulence measurements and plasma parameters from 
ELM-free, MHD quiescent H-modes were gathered in a database 

Database details 
•  129 entries from 29 discharges 

BT0 = 4.5 kG 
Ip = 700-900 kA 
15-45 ms averaging 

•  Turbulence parameters 
Lc/ρi ~ 12 
kθρi ~ 0.2 
τd/(a/cs) ~ 5 
τdω*pi ~ 0.15 

•  Plasma parameters 
–  generally 50%-300% variation 
–  ne, ∇ne, Te, ∇Te, Ti, ∇Ti, vt, 
∇vt, q, ŝ, νe, νi, β, βe, nped, 
ΔRped, δr

sep 
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A search algorithm identifies regression models; models exhibit 
similar scalings despite different parameter compositions 

•  Algorithm adds or removes xk in 
model to find local minimum in 
model error 

•  Many models (local minima) 
exist in high dimensional xk space 

•  Screen models to ensure high 
statistical quality 
–  Statistical significance (αk t-statistics) 
–  Multicollinearity (variance inflation factor) 
–  Error normality (Studentized residuals) 
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Lc increases at higher ∇ne, 1/LTe, ν, and nped; 
decreases at higher Ti, ∇Ti, and ∇vt 
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kθ scalings consistent with Lc scalings; 
τd scalings provide additional insight  
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Parametric scalings point to TEM turbulence and possibly 
KBM or µ-tearing turbulence in NSTX H-mode pedestal 

Parametric dependencies are … 
 most consistent with TEM turbulence 

–  ∇ne (Lc and kθ) and 1/LTe (τd) scalings are consistent with TEM; 
Te/Ti and νe scalings show mixed agreement 

 partially consistent with KBM turbulence 
–  βe scalings (kθ and τd) are consistent with KBM; ∇ne, ∇Ti, and 1/LTe 

show mixed agreement 

 partially consistent with µ-tearing turbulence* 
–  all βe and νe scalings are consistent with µ-tearing, but 1/LTe scaling 

for τd is inconsistent 
–  * NSTX core µ-tearing simulations indicate BES is not sensitive to 

µ-tearing, but pedestal simulations show tearing-parity instabilities 

 least consistent with ITG turbulence 
–  ∇ne and ∇Ti (Lc and kθ) and all νe scalings are inconsistent with 

ITG; Te/Ti scalings (kθ and τd) show mixed agreement 
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Parametric scalings also consistent with 
equilibrium and zonal E×B flows 

•  ∇vt scalings for Lc and kθ point to turbulence suppression by 
equilibrium E×B flow shear 
–  Lc decreases and kθ increases at higher ∇vt 

•  Collisionality scalings are consistent with turbulence reduction 
via zonal flows 
–  τd decreases and Lc increases at higher ν 

•  Pedestal height (nped) increases at larger Lc and τd 
–  Consistent with empirical relationship between wider pedestals 

and larger turbulent structures (Z. Yan et al., PoP 18, 056117 
(2011)) 
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Linear growth rates from GEM gyrokinetic simulations 
show scalings consistent with measured Lc scalings 

GEM simulations with 6 ≤ n ≤ 15 and kθρs ~ 0.2  
indicate instabilities are electromagnetic, destabilized by collisions, 

and exhibit both ballooning and tearing parity 
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5 of 6 ∇ne scenarios indicate low-n 
growth rates increase at higher ∇ne 

7 of 7 ∇Ti scenarios indicate low-n 
growth rates decrease at higher ∇Ti 

GEM γ dependencies on ∇ne and ∇Ti are consistent with measured Lc scalings  



GEM simulations point to tearing parity mode structures 
and highlight the importance of collisions 
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With collisions, γ rises at low-n 
and drops at high-n 

Consistent with measured scalings 
that show higher Lc and lower τd 

at higher ν	



Collisional Collisionless 

n=6 

n=24 

likely tearing parity even parity 

φ contours 



Lc and kθ from BOUT++ pedestal simulations 
compare favorably with measurements 
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Initial value 3D Braginskii fluid simulations evolve ni, ω, j||, A||, Ti, and Te  
with collisionality, E×B advection, field line curvature, and drive terms for j|| 

and ∇P.  Simulations do not include toroidal rotation and parallel advection. 

Lc/ρi ~ 8 is in line with measurements, but 
kθρi ~ 0.7-1.4 is higher than measurements 



BOUT++ parameter scans point to larger fluctuation 
amplitudes at lower ∇ni and higher ∇Ti 
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Note that measurements indicate Lc increases 
at higher ∇ni and low∇Ti 



Future work 
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• Fluctuation amplitudes 
– Radial dependence 
– Parametric dependencies 

• Radial correlation length analysis 
• Radial and poloidal wavenumber spectra 
• Flow fluctuations and time-delay estimation 

– Predator-prey model between flow fluctuations and 
turbulence parameters 

• Fluid simulations with parallel advection and Vtor 



Summary 

•  Pedestal model validation is critical for ITER, and ST edge parameters are 
among the most challenging regimes for turbulence simulations 

•  We measured pedestal turbulence parameters in NSTX H-mode plasmas 
during ELM-free, MHD quiescent periods 

–  Lc/ρi ~ 12   kθρi ~ 0.2     τd/(a/cs) ~ 5 

•  Parametric dependencies for pedestal turbulence measurements are most 
consistent with TEM turbulence and partially consistent with KBM and 
µ-tearing turbulence 

•  GEM gyrokinetic simulations show higher γ at higher ∇ne and lower ∇Ti 
→ consistent with measured Lc 

–  Collisions increase γ at low-n → consistent with measured scalings 

•  BOUT++ Braginskii fluid simulations show saturation amplitudes that 
decrease with ∇ni and increase with ∇Ti → not consistent with scalings 
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Pedestal turbulence measurements 
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Pedestal turbulence parametric dependencies 
in ELM-free, MHD quiescent H-modes 
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Preliminary pedestal turbulence simulations 
(gyrokinetic and Braginskii fluid) 
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