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Why Multimodal Research Options?
» Although current international fusion energy roadmaps have
many common elements, there are also some key differences

— Time schedule, post-ITER facilit

R&D objectives (FNSF, DEMO, etc.),

degree of aggressiveness in DEMO design, scientific discovery vs.

engineering confirmation emphasis, etc.

Japan fusion roadmap
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Why Multimodal Research Options? (cont’d)

* Every fusion blanket and materials
system has shortcomings; there is
no utopian solution

— Multiple blanket systems are being
explored in an effort to identify at
least one viable blanket concept

— E.g., 6 blanket concepts are bein
proposed for exploration on ITE
(not including DCLL concept, etc.)

(TL = TBM Leader)
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Port Number TBM-1 Concept TBM-2 Concept
16 HCLL (TL : EVU) HCPB (TL : EVU)
18 WCCB (TL : JA) HCCR (TL : KO)
2 HCCB (TL : CN) LLCB (TL : IN)

HCLL : Helium-cooled Lithium Lead, HCPB : He-cooled Pebble Beds (Ceramic/Beryllium)

, WCCB : Water-cooled Ceramic Breeder (+Be), HCCR : Helium Cooled Ceramic Reflector

HCCB : ' He-cooled Ceramic Breeder (+Be), LLCB : Lithium-Lead Ceramic Breeder (He/LiPb)



Parameter regimes under investigation in US/JP program

on structural materials for fusion

O Reduced Activation Ferritic/Martensitic Steel (RAFM:JP/US)
Advanced material: {3 Nanostructured ferritic alloy (NFA:US)
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Current status and recent highlights for fusion materials

* Reduced activation ferritic martensitic steels are the
leading fusion structural material option worldwide, due to
good properties, generally favorable fission neutron
irradiation resistance, and extensive industrial capability

* Key uncertainties include ductile-brittle transition temperature
(DBTT) increase due to fusion H, He effects and dose limits in
fusion neutron environment

* Risk mitigation options include oxide dispersion strengthened
(ODS) steels and new ferritic/martensitic steels with a very high
precipitate density designed with computational

thermodynamics tools.
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Provisional temperature and dose regimes for radiation-
induced embrittlement of current fusion grades of
ferritic/martensitic steels have been identified
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Effect of fusion-relevant He production on ferritic/martensitic

steels 1s being investigated using simulation techniques
EUROFER, <10 appm He

Significant void swelling observed in ferritic/ 250.
martensitic steel after 1400 appm He and 25
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Status and recent highlights: S1C/S1C composites

* Fission reactor irradiation stability up to 40 dpa recently confirmed for
S1C/S1C composites at 800°C

* Scoping low dose irradiation studies on SiC joints found no
degradation

* OQutstanding issues include improvements in leak-tightness and
fabrication (complexity and cost) and development of structural

design criteria Data from recent US/J HFIR study
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Status and recent highlights: V alloys and coatings

* Higher strength V alloys have been demonstrated using mechanical
alloying approach

* New processes for fabricating Er203 and Y203 MHD insulator and
T, barrier coatings are being developed (suitable for coating complex
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Status and recent highlights: Tungsten

* Hot wall operation introduces several new phenomena
* e¢.g., Nanofuzz surface formation during plasma exposure

~ 600 - 700 K

(a) Bright field image (under focused image)

» . _ _
PISCES-A: D,-He plasma
M. Miyamoto et al. NF (2009) 065035

600 K, 1000 s, 2.0x10%* He*/m?, 55 eV He*

* Little morphology
* He nanobubbles form
* QOccasional blisters

R.P. Doerner, UCSD

~ 900 - 1900 K

PISCES-B: mixed D-He plasma
M.J. Baldwin et al, NF 48 (2008) 035001
1200 K, 4290 s, 2x10%¢ He*/m?, 25 eV He*

@147 UC PISCES

NAGDIS-II: pure He plasma
N. Ohnoetal., in IAEA-TM, Vienna, 2006
1250 K, 36000 s, 3.5x1077 He*/m?, 11 eV He*

38kV X38,.0888 8. 5Mm

100 nm (VPS W on C) (TEM)

* Surface morphology
* Evolving surface
* Nano-scale ‘fuzz’
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Status and recent highlights: Tungsten (cont’d)

* Hot wall operation introduces several new phenomena
* enhanced D/T retention after neutron irradiation (due to trapping

at defect complexes)

Modeling

= initial
101 0.1 Heivac 1
- 0.5 He/vac
;-C:O.B = 1.0 Helfvac f o
= 1.5 Helvac /

—— 2 0 Helac !
To6 -
i / |
c
ol4 F 900 K .
rs) 4
&’0 2 ~

0 i i i 4

20 25 30 35 4C
r[A]

Calculated fraction of hydrogen that is

trapped in the vicinity of a 2 nm radius He
bubble in tungsten at 900 K (B.D. Wirth).

11

Japan USJ P]t,‘

Experlment

410" ——— ————
. Thermal desorptlon
3510 b |rr~700C
e 0.025 dpa, 100 C
510 F * —0.025dpa, 200C
o F - ——0.025 dpa, 500 C
£2510"

Neutron irradiation
in HFIR

1510 |
110" |

510" |

TDS after 2nd TPE exposure

[Ip—— I Sy

D plasma 400 600 800 1000
exposure in TPE temperature [K]

Hatano et al. FTP 4-1 (Friday)

Desorption experiments on W neutron-
irradiated at high temperature are scheduled
to be performed in the near future



H retention increases dramatically in the presence of

cavity formation -
3 to 5x increase in retained hydrogen when cavities are

present, even with 2-3x reduction in neutron fluence exposure
500-700 appm H 1700-3700 appm H

few cavities)  (rad.-induced cavities present)

55 mm Retained H level is ~100x

higher than expected from
Sievert’s law solubilities
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3 High-Priority Materials R&D Challenges
e [sthere a viable divertor & first wall PFC solution for DEMO/FNSF?

* [s tungsten armor at high wall temperatures viable?
* Do innovative divertor approaches (e.g., Snowflake, Super-X, or liquid walls)
need to be developed and demonstrated?

* (Can a suitable structural material be developed for DEMO?

* What 1s the impact of fusion-relevant transmutant H and He on neutron fluence
and operating temperature limits for fusion structural materials?

* [Is the current mainstream approach for designing radiation resistance in
materials (high density of nanoscale precipitates) incompatible with fusion
tritium safety objectives due to tritium trapping considerations?

* Is the reduced activation mandate too restrictive for next-step devices,
considering that ITER will utilize materials that are not reduced activation?

* (Can recent advanced manufacturing methods such as 3D templating and additive
manufacturing be utilized to fabricate high performance blanket structures at
moderate cost that still retain sufficient radiation damage resistance?

* What range of trittum partial pressures are viable in fusion coolants,

considering tritium permeation and trapping in piping and structures?

* What level of trittum can be tolerated in the heat exchanger primary coolant, and
how efficiently can tritium be removed from continuously processed hot
coolants?

13 G T (T
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Urgency for a high-intensity fusion-relevant neutron

SOUrce
The second materials R&D challenge and parts of the Ist and 3rd
R&D challenge listed above require an intense neutron source for

their resolution.
* Scientific studies of radiation degradation phenomena and tritium trapping
issues in candidate HHF/blanket materials exposed to prototypical fusion

operating environment.
Obtaining engineering data from an intense fusion neutron source 1s a
significant critical path item for DEMO design and licensing
* Prioritize research on a limited number of DEMO material and blanket concepts
(e.g., 1s ODS steel or another special material required?)



Void Swelling 1s typically maximized when the cavity and
dislocation sink strengths are comparable

SWELLING RATE, (%/dpa)
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Recent in situ He injector study during fission reactor
(HFIR) irradiation suggests void swelling may emerge as

an issue at ~25 dpa for ferritic/martensitic steels
« MA957 (ODS steel) and Eurofer97 9%Cr ferritic/martensitic steel

» Eurofer97: 7.5x1022 cavities/m3 with bimodal size distribution (1.3 nm bubbles
& 5 nm voids - precursor to significant swelling) .

e MA957: 7.8x1023 bubbles/m3 & no voids ol B Eurfer | |

H MA957

50 +

40 |-

1400 appm He and 25 dpa at 500°C (56 appm/dpa)

30 +

Frequency (%)

20 +

0
0123456 7389101112131415

Diameter (nm)

SNi+ng — PNit+y
®Ni+n,—> %Fe+He (4.76MeV)

Ny

N

’&,.’\(}‘<‘-~..- *
s

16

H—J

e
| spedmen | | Specimen substrate |

Odette et al. ICFRM-15, Charleston, South Carolina . [ NM@uwe | 7




There are several options to close the current knowledge

gap 1n fusion-relevant radiation effects in materials

* An intense neutron source (in concert with enhanced theory and modeling) is needed to
improve understanding of basic fusion neutron effects and to develop & qualify fusion
structural materials

Current knowledge
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Comparison of Gen IV and Fusion Structural Materials

Environments
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severe materials challenges



Timeline of some key events for nuclear energy and
materials and computational science

=2 e

~ Tokamak era begins

US, electricity TrTR- Q=0.27 \

1990 l

1 Tflops

1 Gflops achieved;
high performance
computing centers
established

Shippingport

Qeq=
/

60 1970 1 9)80 00 / 2010

Development of Mat. Sci.
as an academic discipline

1 Pflops

1st MD simulation of radiation damage multimillion atom MD simulations
(500 atoms, 1 min. time step) (~1 fs time step)
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Detailed timeline of some key facilities for nuclear energy
and materlals ELsTn

CP-1 Graphite  Cp-5 \
rea’ctor

1942 1954 195 1958
Obninsk  Calder
AM-1 Hill
Shippingport

18t radiation damage paper
E.P. Wigner
J. Appl: Phys: 17 (1946) 857
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Contribution of major facilities to Materials degradation

science and technology
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Conclusions

* Substantial progress continues to be made in understanding and

developing high-performance fusion structural materials.

* Ferritic/martensitic steels appear to be suitable for fusion doses up to ~20 dpa

* Higher performance options (e.g., ODS steels) may offer significantly better
radiation resistance, but joining technology and others issues need to be
resolved.

In order to accelerate the pace for developing practical fusion energy,

the construction of an intense fusion neutron source 1s needed.

* Tritium retention (fusion safety)

* Viability of blanket and first wall structural materials

* Engineering database activities for design and licensing purposes, when a viable

candidate has been identified
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