## Multimodal Options for Materials Research to Advance the Basis for Fusion Energy in the ITER Era

## Steve Zinkle<sup>1</sup>, Anton Möslang<sup>2</sup>, Takeo Muroga<sup>3</sup>, Hiro Tanigawa<sup>4</sup>

<sup>1</sup>Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

<sup>2</sup>Karlsruhe Institute for Technology, Eggenstein-Leopoldshafen, Germany

<sup>3</sup>National Institute for Fusion Science, Toki, Gifu, Japan

<sup>4</sup>Japan Atomic Energy Agency, Aomori, Japan

24<sup>th</sup> IAEA Fusion Energy Conference San Diego, California October 8-13, 2012



## Why Multimodal Research Options?

- Although current international fusion energy roadmaps have many common elements, there are also some key differences
  - Time schedule, post-ITER facility R&D objectives (FNSF, DEMO, etc.), degree of aggressiveness in DEMO design, scientific discovery vs. engineering confirmation emphasis, etc.



2 Managed by UT-Battelle for the U.S. Department of Ener Note: This is the digest version of the technical roadmap studied by Roadmap working group organized under AK ITER/BA technology advisory committee of Fusion energy forum of Japan (and further modified to include RIDGE recent ITER schedule changes), and is NOT the roadmap authorized by Japanese government.

## Why Multimodal Research Options? (cont'd)

- Every fusion blanket and materials system has shortcomings; there is no utopian solution
  - Multiple blanket systems are being explored in an effort to identify at least one viable blanket concept
  - E.g., 6 blanket concepts are being proposed for exploration on ITER (not including DCLL concept, etc.)



(TL = TBM Leader)

3

| Port Number | TBM-1 Concept  | TBM-2 Concept  |  |  |
|-------------|----------------|----------------|--|--|
| 16          | HCLL (TL : EU) | HCPB (TL : EU) |  |  |
| 18          | WCCB (TL : JA) | HCCR (TL : KO) |  |  |
| 2           | HCCB (TL : CN) | LLCB (TL : IN) |  |  |

HCLL : Helium-cooled Lithium Lead, HCPB : He-cooled Pebble Beds (Ceramic/Beryllium) WCCB : Water-cooled Ceramic Breeder (+Be), HCCR : Helium Cooled Ceramic Reflector Managed by UI-Battelle HCCB : He-cooled Ceramic Breeder (+Be), LLCB : Lithium-Lead Ceramic Breeder (He/LiPb)



## Parameter regimes under investigation in US/JP program on structural materials for fusion

○ Reduced Activation Ferritic/Martensitic Steel (RAFM:JP/US) Advanced material: ☆ Nanostructured ferritic alloy (NFA:US) ☆ SiC/SiC(US/JP)



4 Managed by U1 for the U.S. De

## Current status and recent highlights for fusion materials

- Reduced activation ferritic martensitic steels are the leading fusion structural material option worldwide, due to good properties, generally favorable fission neutron irradiation resistance, and extensive industrial capability
  - Key uncertainties include ductile-brittle transition temperature (DBTT) increase due to fusion H, He effects and dose limits in fusion neutron environment
  - Risk mitigation options include oxide dispersion strengthened (ODS) steels and new ferritic/martensitic steels with a very high precipitate density designed with computational thermodynamics tools.



### Provisional temperature and dose regimes for radiationinduced embrittlement of current fusion grades of ferritic/martensitic steels have been identified



Lower operating temperature limit due to neutron embrittlement is ~300°C
 Steels with modified thermomechanical treatment can offer slightly improved DBTT
 For the U.S. Department of Energy

# Effect of fusion-relevant He production on ferritic/martensitic steels is being investigated using simulation techniques

Significant void swelling observed in ferritic/ martensitic steel after 1400 appm He and 25 dpa at 500°C (56 appm/dpa)



G.R. Odette (ICFRM-15); He injection from Ni foil during fission reactor irradiation

Good resistance to simulated fusion irradiation environment observed up to ~20 dpa Open question: Are B-doping and He-injector (Ni foil) simulation tests prototypic for actual fusion reactor condition?

7 Managed by UT-Battelle for the U.S. Department of Energy





## Status and recent highlights: SiC/SiC composites

- Fission reactor irradiation stability up to 40 dpa recently confirmed for SiC/SiC composites at 800°C
- Scoping low dose irradiation studies on SiC joints found no degradation
- Outstanding issues include improvements in leak-tightness and fabrication (complexity and cost) and development of structural design criteria





## Status and recent highlights: V alloys and coatings

- Higher strength V alloys have been demonstrated using mechanical alloying approach
- New processes for fabricating Er2O3 and Y2O3 MHD insulator and  $T_2$  barrier coatings are being developed (suitable for coating complex geometries)



# Status and recent highlights: Tungsten Hot wall operation introduces several new phenomena

• e.g., Nanofuzz surface formation during plasma exposure



## Status and recent highlights: Tungsten (cont'd)

- Hot wall operation introduces several new phenomena
  - enhanced D/T retention after neutron irradiation (due to trapping at defect complexes)



Calculated fraction of hydrogen that is trapped in the vicinity of a 2 nm radius He bubble in tungsten at 900 K (B.D. Wirth).



#### Hatano et al. FTP 4-1 (Friday)

Desorption experiments on W neutronirradiated at high temperature are scheduled to be performed in the near future

11 Managed by UT-Battelle for the U.S. Department of Energy

## H retention increases dramatically in the presence of cavity formation 3 to 5x increase in retained hydrogen when cavities are

present, even with 2-3x reduction in neutron fluence exposure

500-700 appm H 1700-3700 appm H (rad.-induced cavities present) (few cavities)



Bolt shank

25 mm

343°C, 10 dpa

Bolt head

1 mm

320°C, 19.2 dpa

Retained H level is ~100x higher than expected from Sievert's law solubilities



Baffle-former bolt removed from Tihange-1 (Belgium) pressurized water reactor 12 Managed by UPBattelle **Type 316 austenitic stainless steel** F.A. Garner et al., J. Nucl. Mater. 356 (2006) 12 for the U.S. Department of Energy

Near Threads

55 mm

333'C, 6 dpa

## 3 High-Priority Materials R&D Challenges

- Is there a viable divertor & first wall PFC solution for DEMO/FNSF?
  - Is tungsten armor at high wall temperatures viable?
  - Do innovative divertor approaches (e.g., Snowflake, Super-X, or liquid walls) need to be developed and demonstrated?
- Can a suitable structural material be developed for DEMO?
  - What is the impact of fusion-relevant transmutant H and He on neutron fluence and operating temperature limits for fusion structural materials?
  - Is the current mainstream approach for designing radiation resistance in materials (high density of nanoscale precipitates) incompatible with fusion tritium safety objectives due to tritium trapping considerations?
  - Is the reduced activation mandate too restrictive for next-step devices, considering that ITER will utilize materials that are not reduced activation?
  - Can recent advanced manufacturing methods such as 3D templating and additive manufacturing be utilized to fabricate high performance blanket structures at moderate cost that still retain sufficient radiation damage resistance?
- What range of tritium partial pressures are viable in fusion coolants, considering tritium permeation and trapping in piping and structures?
  - What level of tritium can be tolerated in the heat exchanger primary coolant, and how efficiently can tritium be removed from continuously processed hot coolants?



# Urgency for a high-intensity fusion-relevant neutron source

- The second materials R&D challenge and parts of the 1st and 3rd R&D challenge listed above require an intense neutron source for their resolution.
  - Scientific studies of radiation degradation phenomena and tritium trapping issues in candidate HHF/blanket materials exposed to prototypical fusion operating environment.
- Obtaining engineering data from an intense fusion neutron source is a significant critical path item for DEMO design and licensing
  - Prioritize research on a limited number of DEMO material and blanket concepts (e.g., is ODS steel or another special material required?)



# Void Swelling is typically maximized when the cavity and dislocation sink strengths are comparable



# Recent in situ He injector study during fission reactor (HFIR) irradiation suggests void swelling may emerge as an issue at ~25 dpa for ferritic/martensitic steels

- MA957 (ODS steel) and Eurofer97 9%Cr ferritic/martensitic steel
- Eurofer97: 7.5x10<sup>22</sup> cavities/m<sup>3</sup> with bimodal size distribution (1.3 nm bubbles & 5 nm voids - precursor to significant swelling)
- MA957: 7.8x10<sup>23</sup> bubbles/m<sup>3</sup> & no voids



<sup>16</sup> Managed by UT-Battelle for the U.S. Depa Odettevet al. ICFRM-15, Charleston, South Carolina



# There are several options to close the current knowledge gap in fusion-relevant radiation effects in materials

• An intense neutron source (in concert with enhanced theory and modeling) is needed to improve understanding of basic fusion neutron effects and to develop & qualify fusion structural materials



Option A: IFMIF + fission reactors +ion beams + modeling Option B: robust spallation (e.g., MTS) + fission reactors + ion beams + modeling Option C: modest spallation (e.g., SNS/SINQ) + fission reactors + ion beams + modeling

## Comparison of Gen IV and Fusion Structural Materials Environments



# Timeline of some key events for nuclear energy and materials and computational science





## Detailed timeline of some key facilities for nuclear energy and materials







**MTR** 

1952



1956

Hill

Calder



ORR

1958

CP-1 Graphite CP-5 reactor 1942 1944 1946 1948 1950



1<sup>st</sup> radiation damage paper E.P. Wigner Managed by UT-Batterle for Je Appler Physic <u>17</u> (1946) 857



1954 Obninsk AM-1





| Contribution of major facilities to Materials degradation |                                                                                                                        |                                                                                                     |                                                                 |                                                                            |                                                                                                                   |                                                                                               |                                                                                                               |                                                                 |                                                                              |  |  |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------|--|--|
| science and technology issues Non- Fusion-                |                                                                                                                        |                                                                                                     |                                                                 |                                                                            |                                                                                                                   |                                                                                               |                                                                                                               |                                                                 |                                                                              |  |  |
| Re<br>Yel<br>Gre                                          | d: TRL<br>llow: TRL<br>een: TRL                                                                                        | 1-3 issues<br>4-6 issues<br>7-9 issues                                                              |                                                                 | ion &<br>fission<br>irrad.                                                 | ITER-<br>TBM                                                                                                      | test<br>stands                                                                                | neutron<br>source                                                                                             | FNSF                                                            | Demo                                                                         |  |  |
|                                                           | Facility                                                                                                               | Non-nuclear Test<br>Stands (thermo-<br>mechanical)                                                  | Non-nuclear Test<br>Stands<br>(corrosion)                       | Ion beams and<br>Fission Reactors                                          | ITER TBM                                                                                                          | Non-nuclear Test<br>Stands (partially<br>integrated)                                          | Fusion Relevant<br>Intense Neutron<br>Source                                                                  | Fusion Nuclear<br>Science Facility                              | DEMO                                                                         |  |  |
| F                                                         | First-Wall/Blanket Structural & Vacuum Vessel Materials                                                                |                                                                                                     |                                                                 |                                                                            |                                                                                                                   |                                                                                               |                                                                                                               |                                                                 |                                                                              |  |  |
| S<br>c<br>n                                               | cience-based design<br>rriteria (thermo-<br>nechanical strength)                                                       | 2. Develop high<br>temperature<br>creep-fatigue<br>design rules for<br>nuclear<br>components        |                                                                 |                                                                            | 4. Proof test<br>verification of<br>blanket module<br>low-dose<br>performance                                     | 4. Validate high<br>temperature<br>creep-fatigue<br>design rules w/o<br>irradiation           | 5. Validate<br>irradiated high<br>temp structural<br>design criteria<br>(50-150 dpa with<br>He, stress)       | 7. Code qualified<br>designs                                    | 7-8. Code<br>qualified designs                                               |  |  |
| E<br>jo                                                   | Explore fabrication & oining tradeoffs                                                                                 | 2. Conventional &<br>advanced<br>manufacturing<br>technologies                                      | 2. Loop tests of<br>joints & novel<br>fabrication<br>approaches | 2. Rad. stability<br>of joints & novel<br>fabrication<br>approaches        | 5. Fabricate<br>blanket modules<br>using DEMO-<br>relevant methods                                                | 5. Validate near<br>prototypic<br>fabrication and<br>joining<br>technology w/o<br>irradiation | 6. Validate near-<br>prototypic<br>fabrication &<br>joining<br>technology (50-<br>150 dpa with He,<br>stress) | 7. Demo-relevant<br>fab processes                               | 8. Prototypic<br>advanced<br>fabrication                                     |  |  |
| R                                                         | Resolve compatibility &<br>corrosion issues                                                                            |                                                                                                     | 3. Basic and<br>complex flow<br>loops                           |                                                                            |                                                                                                                   | 5. Validate<br>corrosion models<br>w/o irradiation                                            |                                                                                                               | 7. Near<br>prototypic<br>operating<br>environment               | 8. Prototypic<br>extended<br>operating<br>environment                        |  |  |
| S<br>fr<br>e<br>r                                         | cientific exploration of<br>undamental radiation<br>iffects in a fusion<br>relevant environment                        |                                                                                                     |                                                                 | 3. Up to 150<br>dpa/With He,<br>stress (ion<br>beams, fission<br>reactors) |                                                                                                                   |                                                                                               | 6. 50 - 150<br>dpa/With He and<br>stress                                                                      |                                                                 |                                                                              |  |  |
| M<br>S<br>fr<br>(<br>in                                   | Material qualification:<br>Structural stability in<br>usion environment<br>e.g., void swelling,<br>rradiation creep)   |                                                                                                     |                                                                 | 3. Up to 70<br>dpa/no He<br>(fission reactors)                             | 3. Materials<br>behavior in a<br>low-dose env.<br>(Demo-relevant<br>matl. & T <2 dpa)                             |                                                                                               | 6. 50 - 150<br>dpa/With He and<br>stress                                                                      | 7. 10 - 50 dpa,<br>Demo prototypic<br>environment               | 7-8. Prototypic<br>operation, 50 -<br>150 dpa/With<br>He/Fully<br>Integrated |  |  |
| M<br>M<br>fu<br>(1                                        | Aaterial qualification:<br>Aechanical integrity in<br>usion environment<br>e.g., strength, rad<br>esistance, lifetime) | 2. Unirrad. mech.<br>prop. data<br>(tensile, creep,<br>fatigue, fract.<br>toughness,<br>da/dN, etc) |                                                                 | 3. Up to 70<br>dpa/no He<br>(fission reactors)                             | 5. Materials<br>behavior in a<br>low-dose fusion<br>env. (Demo-<br>relevant<br>matl.,stress and<br>Temp., <2 dpa) | 5. Qualify<br>components w/o<br>irradiation                                                   | 6. 50 - 150<br>dpa/With He and<br>stress                                                                      | 7. 10 - 50 dpa,<br>Demo prototypic<br>environment               | 7-8. Prototypic<br>operation, 50 -<br>150 dpa/With<br>He/Fully<br>Integrated |  |  |
| F<br>e<br>r                                               | fusion environment<br>ffects on tritium<br>etention & permeation                                                       |                                                                                                     | 2. Unirradiated<br>diffusion and<br>permeation data             | 3. Effect of<br>radiation damage<br>at Demo-relevant<br>temperatures       | 5. Post-irrad.<br>evaluation may<br>provide very<br>useful low-dose<br>info                                       |                                                                                               | 6. Demo-relevant<br>materials (up to<br>50-150 dpa with<br>He at correct<br>temp.)                            | 7. System-scale<br>tritium<br>permeation and<br>loss mechanisms | 7-8. Prototypic<br>permeation &<br>losses                                    |  |  |

after DOE/SC-0149 (2012); ITER TBM column revised/corrected by materials degradation subpanel

## Conclusions

- Substantial progress continues to be made in understanding and developing high-performance fusion structural materials.
  - Ferritic/martensitic steels appear to be suitable for fusion doses up to ~20 dpa
  - Higher performance options (e.g., ODS steels) may offer significantly better radiation resistance, but joining technology and others issues need to be resolved.
- In order to accelerate the pace for developing practical fusion energy, the construction of an intense fusion neutron source is needed.
  - Tritium retention (fusion safety)
  - Viability of blanket and first wall structural materials
  - Engineering database activities for design and licensing purposes, when a viable candidate has been identified

