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RFX-mod and MST Collaborators!

•  Université de Provence, France!
•  Max-Planck-Institut für Plasmaphysik, Germany!
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•  BINP, Novosibirsk, Russia!
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•  Universidad Carlos III de Madrid, Spain!
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•  EURATOM/CCFE Fusion Association, UK!
•  AIST, Tsukuba, Japan!
•  JAEA, Naka, Japan!
•  Department of Physics, Nankai University, PRC!

•  IFTS, Zhejiang Univ, SWIP, PRC!
•  USTC, Hefei, PRC!
•  Auburn University, AL, USA!
•  CompX, Del Mar, CA, USA!
•  FAR-TECH, Inc., San Diego, USA!
•  Florida A&M, FL, USA!
•  General Atomics, USA!
•  LLE, University of Rochester, NY, USA!
•  Los Alamos National Laboratory, USA!
•  Oak Ridge National Laboratory, USA!
•  Princeton Plasma Physics Laboratory, USA!
•  UCLA, Los Angeles, CA, USA!
•  Wheaton College, IL, USA!
•  Xantho Technologies, Madison, WI, USA!



Progress in RFP research!

•  Assessing the RFPʼs fusion potential and understanding key physics!
–  High current and accessibility to the quasi-single-helicity regime!
–  Classical confinement of impurity and energetic ions!
–  Intrinsic rotation and momentum transport!
–  Validation of nonlinear MHD models!
–  Improved active control!

•  Connections to tokamak and stellarator research!
–  Similar physics in different parameter regimes, e.g., micro-turbulence!
–  3D equilibrium reconstructions using a variety of diagnostics!
–  Advanced wall coatings for improved density and impurity control!
–  Novel tokamak experiments in RFP devices, e.g., q(a) < 2!

•  New RFP program in China!
–  University of Science and Technology, Hefei (another university setting)!
–  Construction in collaboration with EAST team!



RFPʼs fusion advantages derive from the concentration of 
magnetic field within the plasma and small applied toroidal field!
•  Small field at the magnets, allows choice for normal conductors!

–  1/10th the magnetic pressure at the magnets than for a tokamak!
–  Very high                         !

•  Large plasma current density!
–  Ohmic heating to burning plasma  

conditions is possible!
–  Minimal or no plasma-facing  

auxiliary heating components!

–  High particle density limit (nG ~ Ip /a2 )!

•  These advantages promote the reliability and maintainability of a fusion 
system!

!eng ~ !p" / Bmax
2



Worldʼs RFP experiments!

Extrap-T2R (Sweden)!
R/a = 1.24 M / 0.18 m!RELAX (Japan)!

R/a = 0.5 m / 0.25 m!

RFX-Mod (Italy)!
R/a = 2 m / 0.46 m!

MST (UW-Madison)!
R/a = 1.5 m / 0.5 m!



New RFP program at USTC in PRC is aimed at important issues 
for both the RFP and toroidal confinement generally!
•  Project authorized in August, 2011!
•  Shell system that facilitates plasma-boundary studies, e.g., rapid entry!
•  Advanced active mode control (Phase 2)!
•  Construction in collaboration with EAST team!

Keda Toroidal Experiment (KTX)"
USTC, Hefei, PRC"

  	


R = 1.4 m,  a = 0.4 m!

Ip = 0.5-1 MA!



Optimizing and Understanding the 
Quasi-Single-Helicity Regime!



Two paths to improved confinement in the RFP!
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RFX!

Understanding the dependence on plasma current in accessing 
the quasi-single-helicity (QSH) regime!
•  First observed in RFX-mod, now in MST at lower IP	



•  Lundquist number appears to be a unifying parameter for QSH transition!
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Lorenzini et al, Nature Physics (2009)!



MST!

RFX!

Understanding the dependence on plasma current in accessing 
the quasi-single-helicity (QSH) regime!
•  First observed in RFX-mod, now in MST at lower IP	



•  Lundquist number appears to be a unifying parameter for QSH transition!
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B. Chapman, EX/P6-01! Lorenzini et al, Nature Physics (2009)!



•  Reduced hydrogen recycling!

•  Reduced impurity in-flux!

Lithium coating of RFXʼs carbon wall improves density control, 
allowing access to high density at high current (n / nG = 0.5 ) !

RFX!

QSH with n / nG ≤ 0.35!
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Lithium deposited by:!
•  Multi-pellet injector!
•  Liquid lithium limiter!



The helical core modulates the kinetic properties at the edge!

•  Er is constant on helical flux surfaces, with ripple consistent with the 
helicity of the dominant QSH perturbation!

helical angle (m,n)=(1,-7)!

Er measured by probes and gas-puff imaging (GPI) !

RFX!

N. Vianello, EX/P08-02!



Te	


(eV)!

Norm Poloidal Flux!

3D equilibrium reconstructions for the single-helical-axis (SHAx) 
limit of QSH using V3FIT and VMEC!
•  Variety of profile diagnostics being incorporated into 3D reconstructions!
•  Dynamic 3D state, with varying strength and orientation of helical structure!

FIR interferometry and Faraday rotation 
(not yet in V3FIT) !

Initial V3FIT for MST!
(magnetics only)    !V3FIT for RFX includes:!

•  Magnetics!
•  Thomson scattering profile!
•  Soft x-ray tomography!
•  Density profile! R (m)

y 
(m)

RFX!

Transport barrier!

MST!

L. Carraro, EX/P3-04; M. Valisa, EX/P3-11! B. Chapman, EX/P6-01!J. Hanson, TH/7-2!



Confinement Physics!



Micro-turbulence could limit confinement in improved RFP 
confinement regimes and the QSH internal transport barrier!
•  Micro-tearing (MT) is emerging as dominant microinstability in the RFP!
•  Larger critical gradient than for tokamak (both MT and ITG)!
•  MT growth rate remains significant at low collisionality, attributed to 

differences in curvature drift!
Internal Transport Barrier!

Linear Growth Rates!
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Classical confinement of impurity ions in MST plasmas with 
inductive profile control!
•  Reduced tearing yields 10-fold increase in global confinement!
•  The “neoclassical” enhancement of perpendicular transport is small  

in the RFP, e.g., banana orbit width < gyro-radius!
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J. Anderson, EX/P3-16!

Carbon is expelled from the core when  
inductive profile control is applied!



Classical confinement of impurity ions in MST plasmas with 
inductive profile control!
•  Reduced tearing yields 10-fold increase in global confinement!
•  The “neoclassical” enhancement of perpendicular transport is small  

in the RFP, e.g., banana orbit width < gyro-radius!
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Fast ion confinement is also close to classical, even in the 
standard RFP with stochastic magnetic field!
•  Tangential 1 MW, 25 keV neutral beam injector on MST!
•  Super-Alfvénic ion source, with projected!

MST!
! fast / ! th  > 0.5

Neutron Decay Rate!
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–1!

H + 3%D! NBI!

J. Anderson, EX/P3-16!



First observation of energetic ion modes by NBI in an RFP!

•  Several bursting modes observed, with frequency scalings 
that are EP-like and Alfvénic!

•  Frequencies too small for TAE modes (AE3D, STELLGAP)!

Hint of fast particle re-distribution!
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Nonlinear MHD Modeling!
&!

Flow and Momentum Transport !



Nonlinear, 3D visco-resistive MHD modeling captures many of 
the dynamics seen in experiments!
•  RFP provides great opportunities for rigorous validation of nonlinear MHD!
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Applied non-resonant helical mode 
simulated in MHD code and tested in RFX!
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Momentum transport and intrinsic flow associated with magnetic 
fluctuations and tearing modes!
•  NIMROD modeling with non-reduced MHD equations provides  

context to understand large but opposing Reynolds and Maxwell stresses!
•  New “kinetic stress” from correlated pressure-magnetic fluctuations!

MST!

Intrinsic flow and impulsive 
momentum transport in MST 
(no applied torque)!

0! 10! 20!
Time (ms)!

30!
0!

40!
B	



(G)!

~!

Vφ	



(km/s)!
0!

40!

NIMROD 
modeling shows!
coupled current 
and momentum 
relaxation!

“kinetic stress” in!
the between-crash!
spin-up phase!

!" # !p||,i !Br $ / B

r/a	



V||	


(km/s)!

(N/m3)!

0! 0!r/a	



Reynolds!

Maxwell!

Sum!
0!

–0.01!

0.02!

0.01!

F/
ρ 0

V A
t A

–1
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Active Mode Control!



RFX has the most complete coil system for active control of 
MHD stability among fusion experiments !
•  192 coils, each independently driven!
•  Refined for the RFP, now applied to novel tokamak experiments in RFX!

–  Control of both resistive wall modes and tearing modes!
–  Applied 3D magnetic shaping!

•  Recent improvements!
–  Dynamic mode decoupler, separates applied fields and 3D system response 

(ports, gaps, etc)!
–  Upgrade underway to reduce latency for control!

RFX!

L. Marrelli, EX/P5-38!
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Active feedback control of (2,1) mode in RFX tokamak plasmas 
yields stable operation with q(a) < 2!
•  Only 6 coils required (covering 3% of the surface)!
•  Clean-mode-control with radial field sensors is essential, to remove 

feedback sidebands!
•  Joint experiments with DIII-D this year (2012 Torkil Jensen Award)!
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Active feedback control of (2,1) mode in RFX tokamak plasmas 
yields stable operation with q(a) < 2!
•  Only 6 coils required (covering 3% of the surface)!
•  Clean-mode-control with radial field sensors is essential, to remove 

feedback sidebands!
•  Joint experiments with DIII-D this year (2012 Torkil Jensen Award)!
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Allowing the (2,1) mode a small, controlled residual amplitude 
reduces sawtooth activity!
•  Slow 10 Hz rotation programmed for the controlled 2/1 mode!
•  Reduced sawtooth activity sustained for several wall times 

τwall ≈ 50 ms, without other growing MHD modes!
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Allowing the (2,1) mode a small, controlled residual amplitude 
reduces sawtooth activity!
•  Slow 10 Hz rotation programmed for the controlled 2/1 mode!
•  Reduced sawtooth activity sustained for several wall times 

τwall ≈ 50 ms, without other growing MHD modes!
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L. Marrelli, EX/P5-38!



Transport in a stochastic magnetic field!

Br (2,1) / BT	



V	


(km/s)!

MST!

Heat transport agrees with test-particle 
expectation (aka Rechester-Rosenbluth), 
with ~ 2X trapped electron reduction!

As residual (2,1) and harmonics are 
increased, intrinsic flow is reversed, 
interpreted as ambipolar Er from 
stochastic field + NTV!

(tokamak)!
RFX!

3D stochastic field derived from 
DEBS nonlinear computation, with 
magnetic spectrum amplitudes 
scaled to experiment (~ 1/2X)!
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Summary!

•  Improving RFP performance through increased plasma current, IP	


–  Access to quasi-single-helicity regime!
–  Density control widens operating space!
–  Ground work in both RFX-mod and MST to maximize and optimize high 

current operation!

•  Understanding key physics!
–  Classical confinement of impurity and energetic ions!
–  Micro-turbulence in improved confinement scenarios!
–  Intrinsic rotation and momentum transport!

•  Advancing toroidal confinement!
–  Optimized mode control !
–  Novel tokamak experiments with q(a) < 2!
–  Equilibrium reconstruction for 3D geometry!
–  Validation of nonlinear plasma models!

•  New RFP program at USTC in Hefei, PRC!



RFP papers at this conference!

Co-authors and Collaborators!

•  TH/P2-10 – Carmody!
•  TH/P2-16 – Cappello!
•  EX/P3-04 – Carraro!
•  EX/P3-08 – Ding!
•  TH/P3-08 – Sovinec !
•  EX/P3-11 – Valisa!
•  EX/P3-16 – Anderson!

•  EX/P3-17 – Den Hartog!
•  EX/P4-21 – Frassinetti  (EXTRAP-T2R)!
•  EX/P4-24 – Masamune (RELAX)!
•  EX/P5-01 – Puiatti!
•  EX/P5-38 – Marrelli!
•  EX/P6-01 – Chapman!
•  EX/P8-02 – Vianello!


