

# FTP/4-5Ra

# Optimisation of production method of a nanostructured ODS ferritic steels

P. Unifantowicz<sup>1</sup>, J. Fikar<sup>1</sup>, P. Spätig<sup>1</sup>, C. Testani<sup>2</sup>, F. Maday<sup>2</sup>, N. Baluc<sup>1</sup>, M.Q. Tran<sup>1</sup> <sup>1</sup>Fusion Technology-Materials, CRPP EPFL, Association EURATOM-Confédération Suisse, 5232 Villigen PSI, Switzerland <sup>2</sup>ENEA CR Cassaccia, 2400-00100 Rome, Italy

# FTP/4-5Rb

# Low Activation Vanadium Alloys for Fusion Power Reactors the RF Results

V.M. Chernov, M.M. Potapenko, V.A. Drobyshev, D.A. Blokhin, N.I. Budylkin, E.G. Mironova, N.A. Degtyarev, I.N. Izmalkov, A.N. Tyumentsev, I.A. Ditenberg, K.V. Grinyaev, A.I. Blokhin, N.A. Demin, N.I. Loginov, V.A. Romanov, A.B. Sivak, P.A. Sivak, S.G. Psakhie, K.P.Zolnikov

Bochvar High Technology Research Institute of Inorganic Materials, Moscow, Russia Tomsk State University, Tomsk, Russia Leypunsky Insitiute of Physics and Power Engineering, Obninsk, Russia NRC « Kurchatov Institute», Moscow, Russia Institute of Physics Strength and Material Science, SB RAS, Tomsk, Russia



# INTRODUCTION



Test temperature dependence of total absorbed energy of ODS-EUROFER (0.3 wt%  $\rm Y_2O_3$ ) in comparison with RAFM steel EUROFER97

R. Lindau et al., JNM, 307-311, Part 1, 2002

Reduced Activation Ferritic ODS steels:

first choice candidates for fusion application



Neutron Irradiation A. Kimura et al, ISFNT-7, May 2005



# INTRODUCTION

Reduced Activation Ferritic ODS steels:

#### COMPOSITION

- Iron matrix
- 14% Cr provides stability of ferritic structure, resistance to corrosion
- W improves thermal stability of the alloy
- Ti, YO nano-oxides improve resistance to creep, fatigue and radiation damage

### PRODUCTION

- Powder metallurgy
  - Mechanical alloying
  - Powder compaction using hot extrusion (HE) or hot isostatic pressing (HIP)
  - Thermo mechanical treatment

### **METHODOLOGY**

• Powders mixed in Ar atmosphere

• Powder mixtures transferred in the attritor in a container filled with Ar

• Milling in attritor in controlled H<sub>2</sub> atmosphere for total 80h for elemental powders and 8h for mixture of pre-alloyed powder and reinforcement particles

#### Powder contamination:

Concentration of oxygen and nitrogen in the powders Criterion for selection of substrates and milling time. E – elemental; P – pre-alloyed Fe14Cr2W0.3Ti base alloy.

|                      | As mixed $E+0.3Y_2O_3$ | E+0.3Y <sub>2</sub> O <sub>3</sub><br>40h | E+0.3Y <sub>2</sub> O <sub>3</sub><br>80h | As-mixed $P+0.3Y_2O_3$ | P+0.3Y <sub>2</sub> O <sub>3</sub><br>8h |
|----------------------|------------------------|-------------------------------------------|-------------------------------------------|------------------------|------------------------------------------|
| wt. % O <sub>2</sub> | 0.44                   | 0.53                                      | 0.65                                      | 0.15                   | 0.27                                     |
| wt. % N <sub>2</sub> | 0.04                   | 0.06                                      | 0.06                                      | 0.01                   | 0.06                                     |

#### Hot Cross Rolling:

- Performed at the CSM Center (ENEA)
- Two directional rolling was implemented
- Highest degree of deformation 80% reduction of thickness (ROT)



# MICROSTRUCTURE

### HIP: Large oxides and pores



#### HCR: Finer structure





# MICROSTRUCTURE



#### HIP



#### Average grain size:

| HIP:         | 0.3 µm |
|--------------|--------|
| HCR 65% ROT: | 0.5 µm |

#### Average oxide diameter:

| HIP:           | 6 nm  |
|----------------|-------|
| HCR (all ROT): | 10 nm |



# **EFFECT OF HOT-CROSS ROLLING**

#### Charpy impact tests:



- Low upper shelf energy for HIP and 50% ROT HCR samples, i.e. low toughness in the plastic fracture regime
- Higher upper shelf energy and lower DBTT for 65 and 80% ROT (-50°C for 80% ROT)

# **EFFECT OF HOT-CROSS ROLLING** Tensile tests:



•Significant reduction of tensile strength in 50% and 65% ROT samples

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

• Smooth change of slope on the engineering strain-stress curves in 50% and 65% ROT compared to HIP'ed samples

# **EFFECT OF SUBSTRATE POWDER PURITY**



#### Charpy impact tests:





HCR samples showed a higher USE and lower DBTT (-24°C) values than their elemental counterparts (-8°C), whereas although the USE also improved in the case of the prealloyed as-HIPed samples, the DBTT was in that case worse (+59°C) than for the elemental ones (+8°C).

|                         | ROT: 0% |       |       | ROT: 65% |       |       |
|-------------------------|---------|-------|-------|----------|-------|-------|
| Test T (°C)             | 25      | 450   | 750   | 25       | 450   | 750   |
| R <sub>m</sub> (MPa)    | 1085    | 792   | 260   | 718      | 384   | 203   |
| R <sub>p0.2</sub> (MPa) | 848     | 712   | 233   | 412      | 329   | 168   |
| З                       | 0.097   | 0.081 | 0.050 | 0.16     | 0.095 | 0.04  |
| ε <sub>u</sub>          | 0.018   | 0.029 | 0.022 | 0.011    | 0.021 | 0.013 |



• Precipitation strengthening by fine oxide particles and transformation induced stress are the main cause of high tensile strength and stiffness of the as-HIPped ODS ferritic steels

• Larger oxides and nitrides at the pre-particle boundaries lead to lower fracture toughness and to brittle fracture3. multiple hot cross rolling enhances the plasticity by decrease of the remnant porosity but also by an extensive structure recovery

• The Charpy tests showed a significant reduction of DBTT and an increase of the upper shelf energy when the deformation was 65% of thickness or higher

• The tensile test in all hot rolled steel samples showed a decrease in tensile strength and yield stress along with increase of ultimate plastic strain

• An additional improvement of plasticity was achieved by using the pre-alloyed powder instead of a mixture of elemental powders.





# FEC-2012 USA, San-Diego, 9 - 13 October, 2012



Russian Federation Bochvar Institute of Inorganic Materials

# FTP/4-5Rb: LOW ACTIVATION VANADIUM ALLOYS FOR FUSION POWER REACTORS - THE RF RESULTS

# V.M.Chernov, M.M.Potapenko, V.A.Drobyshev, D.A.Blokhin, N.I.Budylkin, E.G.Mironova, N.A.Degtyarev, I.N.Izmalkov, A.N.Tyumentsev, I.A.Ditenberg, K.V.Grinyaev, B.K. Kardashev, A.I.Blokhin, N.A.Demin, N.I.Loginov, V.A.Romanov, A.B.Sivak, P.A.Sivak, S.G.Psakhie, K.P.Zolnikov

Bochvar High Technology Research Institute of Inorganic Materials (JSC "VNIINM"), Moscow, Russia,

Tomsk State University, Tomsk, Russia,

Ioffe Physical-Technical Institute, RAS, S.-Petersburg, 194021, Russia,

Leypunsky Institute of Physics and Power Engineering, Obninsk, Russia,

NRC "Kurchatov Institute", Moscow, Russia,

Institute of Physics Strength and Material Sciense, SB RAS, Tomsk, Russia

The RF vanadium alloys: Heats and articles (JSC "VNIINM") Referenced alloy V-4Ti-4Cr, Advanced alloys V-Cr-W-Zr

2010-2011, V-Cr-W-Zr V-(4-9)Cr-(0.1-8)W-(1-2)Zr heats of 0.5-2 kg, 2009-2011. V-4Ti-4Cr heats: 100-110 kg <2014.V-4Ti-4Cr heats: 300 kg









welds (plates 2-6 mm)

- plates up to 1930x367x15 mm, 1500x257x80 mm, - tubes up to 67x6 mm

# **VANADIUM ALLOYS - CHEMICAL COMPOSITIONS.**

| Alloy           | CHEMICAL COMPOSITION (weight %) |      |      |      |       |      |      |
|-----------------|---------------------------------|------|------|------|-------|------|------|
|                 | Ti                              | Cr   | w    | Zr   | С     | Ο    | N    |
| V-4Ti-4Cr (VV1) | 4.21                            | 4.36 |      |      | 0.013 | 0.02 | 0.01 |
| V-Cr-Zr         |                                 | 8.75 |      | 1.17 | 0.01  | 0.02 | 0.01 |
| V-Cr-W-Zr       |                                 | 4.23 | 7.56 | 1.69 | 0.02  | 0.02 | 0.01 |

# VANADIUM ALLOYS: V-4Ti-4Cr, V-Cr-Zr-C, V-Cr-W-Zr-C:

Thermo-Mechanical Treatment (TMT) and Chemico-Thermal Treatment (CTT). Promising ways to improve high-temperature strength-corrosion-radiation resistance are the methods of the TMTs and the CTTs using the combined methods of formation and modification of heterophase and defect substructures:

- 1. The uniform distribution of the stable phases nanoparticles during  $V_x C \rightarrow TiV$  (C, O, N) and  $V_x C \rightarrow ZrC$  transformations by changing (controlling) mechanism of such transformations - from "in situ transformation" to the mechanism of dissolution of V<sub>x</sub>C phase, followed by separation of fine carbides TiV (C, O, N) or ZrC from a supersaturated solid solution.
- 2. Microcrystalline structure under using of large plastic deformation in the intermediate stages of TMT and formation of defect substructures with high stored energy of deformation.
- 3. Ultra-fine particles of ZrO2 (CTT) in low-temperature diffusion alloying of oxygen (internal oxidation) which have a higher thermal stability and provide a significant (200 – 300 deg.) increase of the recrystallization temperature of alloys.
- 4. Structural states with both dispersed and substructure (by the elements of the dislocation, polygonal or microcrystalline structure) hardenings (TMT, CTT, TMT+CTT).

# VANADIUM ALLOYS: THERMO-MECHANICAL (TMT) AND CHEMICO-THERMAL (CTT) TREATMENTS

# 0. TMT-0: as received plates, roads and tubes (JSC "VNIINM").

1. TMT-I : TMT-0 + annealing at (1000 – 1100) °C, (40 – 60) min (vac).

2. TMT-II : TMT-I + annealing 1400 °C (vac), 1h, + 3 cycles "deformation 30 - 50 % at RT, annealing at (600 - 700) °C, 1h (vac)" + deformation (30-50) % at RT and annealing at (950 - 1100) °C, 1h (vac).

3. TMT-III : TMT-I + annealing 1400 °C, 1h (vac) + 3 cycles "deformation 30 % at RT and annealing at 600 °C, 1h (vac)" + 16 cycles with the changing of the deformation axis after each cycle "deformation 30 % at RT and annealing at 1000 °C, 1 h (vac)".

4. TMT-IV: TMT-I + annealing 1400 °C (vac), 1h, + 3 cycles with the changing of the deformation axis after each cycle "deformation 30 % at RT and annealing at 600 °C, 1 h (vac)" + 16 cycles with the changing of the deformation axis after each cycle "deformation 30 % at RT and annealing at 900 °C, 1 h (vac)".

5. CTT-I (Chemico-Thermal Treatment with oxygen saturation of the alloy): TMT-0 + annealing at  $\approx$  600 °C,  $\approx$ 1h (air, oxidation saturation) + annealing at (800 – 1200) °C, (1 – 2) h (vac). Annealing time and temperature are depended from the final oxygen concentration in alloy.

6. CTT-II: TMT-II + CTT-I.



# V-4Ti-4Cr: TMT-I AND TMT-III. MECHANICAL PROPERTIES

Structure and phase modifications (TMT-III) lead to a significant increase in the strength of the alloy in a wide temperature range (up to 800 °C).

The absolute value of hardening ( $\Delta \sigma \approx 100$  MPa) is weakly dependent on temperature.

# V-4Ti-4Cr: TMT-I – TMT-IV. MECHANICAL PROPERTIES

| TMT     | Method of modifying the microstructure                                                                      | σ <sub>0.1</sub> , MPa | δ, %  | ψ, %  |
|---------|-------------------------------------------------------------------------------------------------------------|------------------------|-------|-------|
|         | Test $T = 20 \ ^{\circ}C$                                                                                   |                        |       |       |
| TMT I   | The standard treatment regime                                                                               | 290-310                | 19-20 | 80-91 |
| TMT II  | Change of the mechanism of $V_2C \rightarrow TiV(C,O,N)$ transformation                                     | 330-340                | 20-25 | 85-90 |
| TMT III | The formation of a more small microcrystalline structure                                                    | 370-380                | 23-24 | 83-87 |
| TMT IV  | Extremely high dispersity of second phase<br>particles and substructures with a high density of<br>defects. | 390-420                | 15-17 |       |
|         |                                                                                                             |                        |       |       |
| TMT I   | The standard treatment regime                                                                               | 170-190                | 17-19 | 81-86 |
| TMT II  | Change of the mechanism<br>of $V_2C \rightarrow TiV(C,O,N)$ transformation                                  | 210-230                | 17-18 | 76-80 |
| TMT III | The formation of a more small microcrystalline structure                                                    | 270-280                | 13-15 | 75-85 |
| TMT IV  | Extremely high dispersion of second phase<br>particles and substructures with a high density of<br>defects. | 330-370                | 13-14 |       |

# VANADIUM ALLOYS: V-Cr-Zr-C and V-Cr-W-Zr-C: TMT-I, CTT-II. Mechanical properties

| ТМТ         | Tes                       | Test T = 20 °C          |      |                           | Test T = 800 °C         |      |  |
|-------------|---------------------------|-------------------------|------|---------------------------|-------------------------|------|--|
|             | σ <sub>0,1</sub> ,<br>MPa | σ <sub>в</sub> ,<br>MPa | δ, % | σ <sub>0,1</sub> ,<br>MPa | σ <sub>B</sub> ,<br>MPa | δ, % |  |
| V-Cr-7r-C   |                           |                         |      |                           |                         |      |  |
|             | 040                       | 205                     | 05   | 400                       | 005                     | 00   |  |
| I IVI I -I  | 240                       | 395                     | 25   | 180                       | 235                     | 20   |  |
| CTT-II      | 730                       | 840                     | 6.5  | 370                       | 400                     | 8    |  |
|             |                           |                         |      |                           |                         |      |  |
| V-Cr-W-Zr-C |                           |                         |      |                           |                         |      |  |
| TMT-I       | 300                       | 480                     | 25   | 190                       | 265                     | 25   |  |
| CTT-II      | 675                       | 810                     | 4.5  | 400                       | 425                     | 6.5  |  |

CONCLUSION: The RF Low Activation Vanadium Alloys for Nuclear Fusion and Fission Reactors Applications (coolants Li, Na, Pb, Pb-Li). Potential of recycling vanadium alloys can make structure waste manageable. VANADIUM ALLOYS ARE THE REAL ALTERNATIVE TO ALL TYPES OF FERRITIC-MARTENSITIC STEELS.

<2012: Referenced alloy V-4Ti-4Cr: Heats up to 110 kg. Any articles. Recommendations for the nuclear applications: <100 dpa-Fe, T-window (300)350 – 750(800) °C. Applications: TBM DEMO in ITER, DEMO-FusionPowerPlant (Li, Pb-Li), FastBreederReactors: BN-1200(Na), MBIR(Na), BREST (Pb). The alloy V-4Ti-4Cr is the best alloy of the V-Ti-Cr system (USA, Japan, Russia). The RF Knowledge Data Bases seem to be appropriate for the V-4Ti-4Cr alloy but further progress is anticipated for the advanced alloys of the system V-Cr-W-Zr-C-O.

# < 2020: OPTIMISM UP TO 160 dpa-Fe, T-window <300 – 850(900) °C.

**REFERENCED V-4Ti-4Cr:** Large heats (150-300 kg) and articles. Optimization (minimization) of the technological concentration of impurities.

Reactor tests: BN-600, 10-160 dpa-Fe, Tirr = 380 °C – 700 °C.

Corrosion tests (Li, Na, Pb, Pb-Li).

# ADVANCED V-Cr-W-Zr-C-O (heats up to 40 kg):

- further optimizations of chemical compositions and regimes of thermal-mechanicalchemical treatments (TMT&CTT) of heats and articles, higher the thermal stability of solid solutions, nanoparticles, substructures and grain boundaries,

- heats, articles and reactor properties.