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Summary 

•  New measurements reveal key role that turbulent-
driven sheared ExB flows* play in accessing H-mode, 
critical to ITER/fusion success 
–  HL-2A L-mode 

–  Limit-cycle-oscillation (LCO) regime stretches out transition in 
DIII-D 

–  EAST L-H transitions 

•  Predator-prey model compares favorably to results 

•  Combined experiment/model insights should 
–  Permit development of microphysics-based macroscopic 

model of transition threshold 

–  Guide turbulence simulations to reproduce results 

*Referred to as “Zonal Flows” in many quarters 
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m,n=0 Sheared ExB Thought to Be Important for Edge 
Barrier…. 

Sheared Er Can Tilt & Stretch Turbulent Structures or Eddies  

+ 

Radial E field determined from radial force balance… 

Er =
1
ne

∇pi −VxB
Does the turbulence 
itself create strong 
sheared Er and thus 
initiate the transition 
process? 

VE(r) 
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Turbulence Can Drive the m,n=0 ExB Shear Flow: 

PLF = − ∂
∂r
vr vθ VExB

LF

 
Fθ Rey

= − ∂
∂r
vr vθ

Poloidal Component of 
Reynolds Force: 

Rate of work done by 
turbulence on low frequency  
(LF) m,n=0 ExB: 

m,n=0 ExB causes no transport  
 
Work done on m,n=0 ExB comes at the 
expense of the turbulence energy & 
leads to reduced rate of transport 

Poloidal 
direction 

B0 

VE
LF
   m,n=0 Er 

Flux 
Surface 

FRey 
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Process can be viewed as a power balance between 
spatio-temporal scales 

Turbulent transport & m,n=0 ExB flow 
set by this power balance 

Turbulent scale (broadband  
m,n > few; f>20-30 kHz) 

 

∂ v2

∂t
= Pin − PHF − PLF

∂VExB
LF2

∂t
= PLF − PLF

diss

Low-Frequency (LF) m,n=0 ExB 
scale [Sink for Fluctuation energy] 
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New multi-point probe arrays used to provide stress 
& m,n=0 ExB flow measurements inside LCFS 

 

γ decorr
pl = γ decorr

lab −VExB / Lθ
corr

v⊥
2   

vr vθ
VExB

LF  includes f<fc
m,n=0 ~ 5kHz

assuming that v=
−

∇φ fl × B
B2

Probes (& BES for Lcorr) Measure New Multi-point arrays: 

Complement w/ BES, DBS, … 
Fluctuation diagnostics 
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Experiments show that this actually occurs 

See M. Xu PRL ’12 for flow drive physics; also M. Xu PoP’10 
See K. Zhou, PRL’06, PPCF’11 for identification of m/n=0/0 structure 

m=0 
n=0 
ExB 

Turbulent 
   Range 

m=0 
n=0 
ExB 

Turbulent 
   Range 

1 cm inside LCFS of ECH heated Limiter Plasma 
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Expected turbulence & m,n=0 ExB flow behaviors: 

[Manz, PoP12] 

LCO Regime when Pin –PHF > PLF > PLF
diss 

 

i.e. vr vθ
′VExB

LF > γ eff −γ decorr( ) v⊥2⎛
⎝⎜

⎞
⎠⎟

H-mode when PLF > Pin -PHF 

L-mode when PLF < PLF
diss 

i.e. vr vθ
′VExB

LF <νLFVLF
2  ⎛

⎝⎜
⎞
⎠⎟

 
i.e. vr vθ

′VExB
LF >νLFVLF

2  ⎛
⎝⎜

⎞
⎠⎟
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HL2A:  ECH L-mode Plasmas 
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Strength of m,n=0 ExB Shear Flow Drive Increases with Paux 
inside the LCFS 

Reynolds 
Force 

Poloidal ExB  
Drift Profile 

Rate of Work by  
Turbulence on  
LF m,n=0 ExB 

Ref: M. Xu, PRL’12 

What happens with further increases of heating power? 

SOL SOL SOL 
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DIII-D:  L-mode to LCO (a.k.a. I-phase)        
     Transition Studies 
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LCO Characterized by m,n=0 ExB Oscillations & 
Modulation of Turbulent Fluctuation Amplitude 

•  LF Sheared ExB Flow 
Oscillations in LCO 

•  Turbulent Fluctuation 
Amplitude Modulated in 
LCO 

•  LCO Dynamics Localized 
to ~2-3cm Inside LCFS 

•  LCO Gives Way to Steady-
state H-mode w/ ExB 
Shear & Reduced 
Transport 

Schmitz et al, PRL’12 
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Sheared m,n=0 ExB is Driven by Turbulent Stress 

•  Turbulent stress 
modulated w/r/t 
m,n=0 ExB  

•  Max stress gives 
onset of max. 
acceleration  

•  Peak VE ~ /2 delay 
w/r/t Turbulence 

•         rises faster than 
It decays 

VExB
LF  

VExB
LF  

Periodic Maxima 

ExB Acceleration Onset 

(a) 

(b) 

(c) 

(d) Electron diamagnetic direction 

1cm inside LCFS of NBI-heated LSN Discharge 
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m,n=0 ExB Flow Becomes Dominant Turbulent Power Loss 
Channel in LCO Regime 

•  Equipartitioned power 
transfer in L-mode 

•  Power transfer rate to 
ExB shear flow increases 
when LCO starts 

•  ExB shear flow becomes 
dominant turbulent 
power loss channel in 
LCO regime 

•  In LCO, max. PLF/v2 value 
exceeds L-mode energy 
input rate & rapidly 
drains turbulent energy 

L-mode LCO 
Regime 

 eff 

1cm inside LCFS of NBI-heated LSN Discharge 
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DIII-D:  LCO TO H-mode Transition 
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Grad-Pi  component of ExB grows as LCO progresses 

•  Total  ExB larger than 
grad-Pi component, 
ExB dia early in LCO  

•   ExB dia Gradually 
Becomes Large 
Enough to Impact 
Turbulence (Schmitz, 
PRL’12) 

•  Suggests transition 
from Zonal Flow to 
Mean-shear flow 
regime during LCO 

Ref:  L. Schmitz, PRL ‘12 
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Strong power transfer into m,n=0 ExB shear flow is locked in 
during H-mode 

•  LF ExB profile 
oscillates in LCO 
phase; peak values 
approach H-mode 
values 

•  Transfer rate to LF ExB 
in LCO oscillates 
around H-mode 
values 

•  H-mode locks into 
upper range of LCO 
transfer rate, close to 
L-mode  γ eff

γ eff L
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EAST:  L-H Transition Studies 
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Turbulence Collapses when: 
 
 
 
 
 
Net energy input rate                        determined from 
LCO regime w/ same edge gradients…  
 
 

Power transfer to m,n=0 ExB plays key role in L-H transition 

PLF > Pin − PHF

γ eff −γ decorr( )

i.e. when 
vr vθ ′VZF

v⊥
2 γ eff −γ decorr( ) >  1   ==>   v⊥

2 ∝ e− t/τ
⎛

⎝
⎜

⎞

⎠
⎟
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Determine Power Input into Turbulence from Turbulence 
Energy Recovery Rate in LCO Regime 

•  Identify LCO regime with 
same macroscopic 
parameters & edge 
gradients 

•  Measure turbulence 
recovery rate when m,n=0 
ExB flow is small 

•  Use recovery rate in 
analysis of L-H transition 

Manz et al, PoP ‘12 

Turbulence Recovery 
Timescale in EAST LCO 
Regime  
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L-H Transition When m,n=0 LF ExB Drive Exceeds Energy Input 
Rate into Turbulence 

vr vθ ′VZF ≈ γ eff −γ decorr( ) v⊥2

•  Turbulence Energy & 
LF ExB Energy 
Increase 

•  Power Transfer 
Increases 

•  Power Transfer Grows 
to ~Equal Turbulent 
Energy Input Rate 

•  L-H Transition Occurs 
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Comparison to Predator-Prey Model 
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∂ v⊥
2

∂t
= γ eff v⊥

2 −γ decorr
pl v⊥

2 − vr vθ
′VExB

LF

∂VExB
LF2

∂t
= vr vθ

′VExB
LF −νLFVExB

LF2

Predator-Prey Reduced Model 

K&D PRL’03 closed this system to form a reduced model with following: 

POWER BALANCE MODEL 

 
vr vθ ∝ ′VExB

LF

1+α ′VE
2 q ∝− v⊥

2 τ corr∇pi ′VExB ∝∇pi

γ eff = γ eff (∇n,∇T , ′VE )
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Slow Power Ramp Gave an LCO State Leading to H-
mode…. 

•  Low heating è L-mode 
state 

•  Intermediate heating è 
LCO state w/ strong 
Zonal Flow & Turbulence 
Modulations 

•  Strong heating è 
Collapse of turbulence & 
Zonal Flow, Rise of mean 
flowè H-mode 

Kim & Diamond, PRL’03 
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Predator-Prey Model Reproduces Observed L-H Transition 
Dynamics 

•  Turbulent-driven m,n=0 ExB 
(“Zonal Flows”) builds up & 
regulates turbulence 

•  Reduction in transport 
builds up grad-Pion ExB flow 

•  PLF grows; when turbulent 
drive is exceeded 
turbulence collapses 

•  Turbulent-driven m,n=0 ExB 
decays 

•  Strong grad-Pion ExB flow 
locks-in H-mode  

Manz, PoP’12;  
Miki & Diamond PoP’12. 
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Conclusions: 

•  In L-mode Rate of Power Transfer from Turbulence into 
m,n=0 ExB Flow Increases w/ Paux 

•  LCO Onset When Power Transfer in m,n=0 ExB Flow 
Becomes Dominant Turbulent Energy Sink 

•  Turbulent stress drives the m,n=0 ExB Flow in early LCO; 
Effects Isolated to just inside LCFS 

•  grad-Pion component of LF m,n=0 ExB flow grows in LCO 
regime and dominates at transition to H-mode 

•  H-mode locks-in strong power transfer 

•  L-H transition is the limiting case of this more general 
phenomena 

•  Results Compare Favorably to KD’03 Predator-Prey Model 
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Questions & Open Issues 

•  Independent Confirmation is Needed 
•  Results Imply Threshold Linked to turbulent-driven 

m,n=0 ExB Flow Damping 
–  What happens when neutral recycyling recovers in long pulse 

machines?  Can we stay in H-mode or Recover an H-mode? 

•  Use Insights to Move Past Empiricism and Build a 
Macroscopic Power Threshold Model Based on 
Turbulence Physics 

•  Need to Isolate Role of Slow Gradient Buildup in LCO 
in Locking in H-mode 
–  Need to Separate VxB and grad-Pion Contributions 

•  Insights Can Guide Turbulence Simulations of L-H 
Transition & Allow Them to Reproduce Results; Simple 
Fluid models Should Suffice for the Physics & GK can 
Fill in Discharge-specific Details 
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BACKUPS 
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LCO Characterized by m,n=0 ExB scale & Turbulent-scale 
Kinetic Energy Oscillations 

•  Turbulent fluctuation 
amplitude  & m,n=0 
sheared ExB flow are 
modulated in LCO 

•  System oscillates between 
L-mode & near H-mode 
conditions  

•  Turbulence suppressed in 
H-mode by steady-state 
ExB shear 

•  Dynamics localized to 
~2-3cm inside LCFS 

ref:  Schmitz PRL’12 

1cm inside LCFS of NBI-heated LSN Discharge 
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L-mode LCO 
Regime 

 eff 

Probe Results 

0.0

1.5

′VE
106Hz

BES Results 
PRELIMINARY 

Z. Yan & G. McKee, Private Comm. 

106Hz

0.0

2.0

1602 1609Time (msec)

Probe & BES Velocimetry Give Similar Results 
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Turbulent Stress (disordered small scale) can Drive 
Flows (large scale ordered) 

� 

dFy = [∏xy(x +δx) −∏xy(x)]dA

Force balance 
On fluid element: 

Turbulent momentum conservation eqn: 

  

� 

∂ V
∂t

= −∇⋅
 
Π t −ν V + ...

 
Π t = ˜ v ̃  v −

˜ b ̃  b 
mnµ0

Divergence of Turbulent 
Stress Can Amplify Flow! 

BACKUP 


