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Summary

e New measurements reveal key role that turbulent-
driven sheared ExB flows* play in accessing H-mode,
critical to ITER/fusion success

— HL-2A L-mode

— Limit-cycle-oscillation (LCO) regime stretches out transition in
DIlI-D

— EAST L-H transitions
 Predator-prey model compares favorably to results

e Combined experiment/model insights should

— Permit development of microphysics-based macroscopic
model of transition threshold

— Guide turbulence simulations to reproduce results

*Referred to as “Zonal Flows” in many quarters
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m,Nn=0 Sheared ExB Thought to Be Important for Edge
Barrier....

Sheared E, Can Tilt & Stretch Turbulent Structures or Eddies

Radial E field determined from radial force balance...

1 Does the turbulence
E =— Vp. — VxB itself create strong
r l
ne sheared E, and thus
initiate the transition
process?
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Turbulence Can Drive the m,n=0 ExB Shear Flow:

CMTFO
Poloidal Component of
VLF Reynolds Force:
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Rate of work done by
> turbulence on low frequency
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Poloidal m,n=0 ExB causes no transport

direction
Work done on m,n=0 ExB comes aft the

expense of the turbulence energy &
leads to reduced rate of transport
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Process can be viewed as a power balance between
spatio-temporal scales

Turbulent scale (broadband

m,n > few; £>20-30 kHz)
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New multi-point probe arrays used to provide stress

& m,Nn=0 ExB flow measurements inside LCFS
CMTFO

Probes (& BES for Lc°™) Measure New Multi-point arrays:
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Complement w/ BES, DBS, ...
Fluctuation diagnostics

G.R. Tynan, et al, Turbulent Power Transfer into LF ExB flows as the Trigger .
for the H-mode Transition, IAEA 2012, 8-13 October 2012 UCSan Dlegg




Experiments show that this actually occurs

1 cm inside LCFS of ECH heated Limiter Plasma
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See M. Xu PRL 12 for flow drive physics; also M. Xu PoP’10
h See K. Zhou, PRL’06, PPCF’11 for identification of m/n=0/0 structure
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Expected turbulence & m,n=0 ExB flow behaviors:

L-mode when P < P diss
(i (5.) vt <v i,
LCO Regime when P,,—P- > P . > P dss
(ie. (7, v 2v, v |
H-mode when P > P, -P

(e (550 Vi > (7~ )

[Manz, PoP12]
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HL2A: ECH L-mode Plasmas
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Strength of m,n=0 ExB Shear Flow Drive Increases with P,
iInside the LCFS

Ref: M. Xu, PRL'12
Rate of Work by
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What happens with further increases of heating power?
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DIlII-D: L-mode to LCO (a.k.a. |-phase)
Transition Studies
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LCO Characterized by m,n=0 ExB Oscillations &
Modulation of Turbulent Fluctuation Amplitude

Dili-D
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LF Sheared ExB Flow
Oscillations in LCO

Turbulent Fluctuation
Amplitude Modulated in
LCO

LCO Dynamics Localized
to ~2-3cm Inside LCFS

LCO Gives Way to Steady-
state H-mode w/ ExB
Shear & Reduced
Transport
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Sheared m,n=0 ExB is Driven by Turbulent Stress
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m,N=0 ExB Flow Becomes Dominant Turbulent Power Loss
Channel in LCO Regime

1cm inside LCFS of NBI-heated LSN Discharge
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DIlI-D: LCO TO H-mode Transition
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Grad-P; component of ExB grows as LCO progresses

CMTFO
Ref: L. Schmitz, PRL 12
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Strong power transfer into m,n=0 ExB shear flow is locked in
during H-mode

DII-D shot# 147725 & 147727
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EAST: L-H Transition Studies

G.R. Tynan, et al, Turbulent Power Transfer into LF ExB flows as the Trigger .
for the H-mode Transition, IAEA 2012, 8-13 October 2012 UC San DngO



Power transfer to m,n=0 ExB plays key role in L-H transition

Turbulence Collapses when: P, >P —P
(9,7,)V7
. r- 0o ~ _
i.e. when Z > 1 = <vi>o<:e "

<‘7i > (7@7 Y decorr )

Net energy input rate (Veﬁv — Vdecorr) determined from
LCO regime w/ same edge gradients...
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Determine Power Input intfo Turbulence from Turbulence
Energy Recovery Rate in LCO Regime

Turbulence Recovery
Timescale in EAST LCO
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L-H Transition When m,n=0 LF ExB Drive Exceeds Energy Input
Rate into Turbulence

CMTFO
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Comparison to Predator-Prey Model
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Predator-Prey Reduced Model

POWER BALANCE MODEL
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Slow Power Ramp Gave an LCO State Leading to H-
mode....

e Low heatfing @ L-mode 3
state 5
e Intermediate heating =2 5
LCO state w/ strong E
Zonal Flow & Turbulence _ -
Modulations .
e Strong heating 2 :
Collapse of turbulence & j
Zonal Flow, Rise of mean obd ~— — - I ]
flow=> H-mode 0.0 0.5 1.0 1.5 2.0
Q
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Predator-Prey Model Reproduces Observed L-H Transition
Dynamics

CMTFO
Manz, PoP’12;
Miki & Diamond PoP’12.
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Conclusions:

e |n L-mode Rate of Power Transfer from Turbulence into
m,N=0 ExB Flow Increases w/ P

AauXx

e LCO Onset When Power Transfer in m,n=0 ExB Flow
Becomes Dominant Turbulent Energy Sink

e Turbulent stress drives the m,n=0 ExB Flow in early LCO;
Effects Isolated to just inside LCFS

e grad-P,,, component of LF m,n=0 ExB flow grows in LCO

IoN

regime and dominates at transition to H-mode
e H-mode locks-in strong power transfer

e L-H fransition is the limiting case of this more general
phenomena

e Results Compare Favorably to KD'03 Predator-Prey Model
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Questions & Open Issues

* Independent Confirmation is Needed

e Results Imply Threshold Linked to turbulent-driven
m,n=0 ExB Flow Damping
— What happens when neutral recycyling recovers in long pulse
machinese Can we stay in H-mode or Recover an H-mode®?¢
e Use Insights to Move Past Empiricism and Build a
Macroscopic Power Threshold Model Based on
Turbulence Physics

e Need to Isolate Role of Slow Gradient Buildup in LCO
in Locking in H-mode
— Need to Separate VxB and grad-P._ ., Contributions

e |nsights Can Guide Turbulence Simulations of L-H
Transition & Allow Them to Reproduce Results; Simple
Fluid models Should Suffice for the Physics & GK can
Fill in Discharge-specific Details

G.R. Tynan, et al, Turbulent Power Transfer into LF ExB flows as the Trigger

for the H-mode Transition, IAEA 2012, 8-13 October 2012 UC San Dlego




CMTFO

BACKUPS
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LCO Characterized by m,n=0 ExB scale & Turbulent-scale

Kinetic Energy Oscillations

1cm inside LCFS of NBl-heated LSN Discharge
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Turbulent fluctuation
amplitfude & m,n=0

sheared ExB flow are
modulated in LCO

System oscillates between
L-mode & near H-mode
conditions

Turbulence suppressed in
H-mode by steady-state
ExB shear

Dynamics localized to
~2-3cm inside LCFS

ref: Schmitz PRL'12
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Probe & BES Velocimeitry Give Similar Results

Probe Results ,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4

shot#147725
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Turbulent Stress (disordered small scale) can Drive
Flows (large scale ordered)

Force balance
On fluid element:

dF, =[11,,(x +ax)-11,,(x)]dA

0 = Sy

Turbulent momentum conservation eqn:
IV .. »
%z—V-H;V(V>+ y[ T, (x+ )
X

Divergence of Turbulent
Stress Can Amplify Flow!
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