Theory of Ignition and Hydro-Equivalence for Inertial Confinement Fusion

R. Betti Fusion Science Center and Laboratory for Laser Energetics University of Rochester 24th IAEA Fusion Energy Conference San Diego, CA 8–13 October 2012

Summary

Inertial confinement fusion (ICF) ignition theory is used to assess National Iginition Facility (NIF) experiments and design ignition-scalable implosions on OMEGA

- ICF ignition theory is used to derive performance parameters that can be measured in experiments
- The theoretical results can be easily related to the Lawson criterion
- Applications to NIF indirect drive implosions show $P\tau$ up to 18 atm s, and pressures up to ~125 Gbar (~350 Gbar is required for ignition)
- Hydrodynamic scaling is used to design direct-drive similarity experiments between OMEGA and the NIF
- OMEGA implosions that scale to ignition at NIF energies require an areal density of ~0.3 g/cm² and a neutron yield of ~4 \times 10¹³

ICF IGNITION THEORY FROM THE LAWSON CRITERION

Like in magnetic confinement fusion (MCF), the Lawson criterion determines the ICF ignition condition where ignition occurs in the hot spot

ICF implosions cannot achieve ~10-keV temperatures through compression alone

- High V_i requires thin shells

ICF must ignite at ~5 keV, requiring

 $V \sim 400$ km/s and $P\tau > 25$ atm s.

 $\begin{array}{c}
1000 \\
800 \\
600 \\
400 \\
200 \\
-500 -250 \\
z \ (\mu m)
\end{array}$

r (µm)

LLE

FSC

Unlike in MCF, heat conduction losses do not reduce the thermal energy (pressure) in the hot spot of ICF capsules FSE

 $q_{\text{heat}} = -\kappa(T) \nabla T$ $\kappa(T) \approx \kappa_0 T^{5/2}$

Balance heat flux with ablation enthalpy* flux

 $q_{\text{heat}} = \frac{5}{2}PV_a$

Mass ablation rate from shell into the hot spot

$$\dot{m}_a = 0.2 \frac{m_i \kappa_0 T_0^{5/2}}{R_{\rm hs}}$$

The hot spot is confined by a dense shell with the confinement time depending on the shell inertia FSE

• The temperature depends mainly on implosion velocity

$$T \sim \frac{V_i^{1.2}}{\kappa_0^{2/7}} (\rho R)^{0.2}$$

• The confinement time comes from applying Newton's law to the shell

$$M_{\rm sh}\ddot{R} \sim M_{\rm sh}\frac{R}{\tau^2} = 4\pi P_{\rm hs}R^2 \longrightarrow \tau \sim \sqrt{\frac{M_{\rm sh}}{4\pi P_{\rm hs}R}}$$

• The 1-D ignition parameter* $\chi \equiv \frac{P\tau}{P\tau(T)_{ig}}$ is rewritten in terms of measurable quantities

$$\chi \equiv \frac{P\tau}{P\tau(T)_{ig}} \approx \rho R_{g/cm^2}^{0.8} \left(\frac{T_{keV}}{4.7}\right)^{1.6}$$

One-dimensional simulations of gain = 1 targets confirm that the 1-D ignition condition depends on ion temperature and total areal density FSE

 Comparison* of ignition condition with simulation of gain = 1 targets

 Ignition-relevant parameters inferred from measurable quantities

UR

Ignition parameter

$$\chi_{1-D} \equiv \frac{P\tau}{P\tau(T)_{ig}} \approx \rho R_{g/cm^2}^{0.8} \left(\frac{T_{keV}}{4.7}\right)^{1.6}$$
Lawson's $P\tau$
 $P\tau \approx 8 \left(\rho R_{g/cm^2} T_{keV}\right)^{0.8} atm \cdot s$

All hydrodynamic quantities are calculated without burn (no alphas).

*C. D. Zhou and R. Betti, Phys. Plasmas <u>15</u>, 102707 (2008).

Three-dimensional effects^{1,2} are included through the yield over clean (YOC) and its relation to the hot-spot clean volume

¹ P. Y. Chang *et al.*, Phys. Rev. Lett. <u>104</u>, 135002 (2010). ² R. Betti *et al.*, Phys. Plasmas <u>17</u>, 058102 (2010).

The LLNL ignition threshold factor (ITFx) from fitting of LASNEX results is the cubic power of the Lawson parameter

• Rewrite the Lawson criterion by using the 1-D yield Y_N in the YOC¹

$$\boldsymbol{\chi}_{3\text{-}D} \approx \left(\boldsymbol{\rho}\boldsymbol{R}_{g/cm^{2}}^{no\,\alpha}\right)^{0.6} \left(\frac{0.24\,\boldsymbol{Y}_{N}^{16}}{\boldsymbol{M}_{fuel}^{mg}}\right)^{0.34}$$

• The ignition criterion can be written in terms of energy

• Compare LLNL performance parameter² ITFx with cubic power of χ for $M_{\text{DT}} = 0.17$ mg

ITFx^{1-D}_{NIF}
$$\equiv \frac{Y_N^{16}}{0.32} \left(\frac{\rho R}{1.5} \right)^{2.3}$$
 \checkmark $\chi_{3-D}^3 \equiv \frac{Y_N^{16}}{0.35} \left(\frac{\rho R}{1.5} \right)^{1.8}$

¹ R. Betti et al., Phys. Plasmas <u>17</u>, 058102 (2010).

² B. K. Spears et al., Phys. Plasmas <u>19</u>, 056316 (2012).

The Lawson parameter is used to estimate *P* and $P\tau$ for NIF indirect drive and OMEGA direct drive

• The hot-spot pressure is inferred _____ from ${\it P}\tau$ and the burn duration $\tau_{\rm burn}$

$$\mathbf{P}(\mathbf{Gbar}) \approx \mathbf{27} \frac{\boldsymbol{\chi}_{\mathbf{3}-\mathbf{D}}}{\boldsymbol{\tau}_{burn}^{ns}} \left(\frac{\mathbf{4.7}}{\boldsymbol{\tau}_{i}^{keV}}\right)^{\mathbf{0.8}}$$

NIF shot	N120321	N120131	N110914	N111215
P $ au$ atm/s	18	12	15	15
$\chi\equiv {m ho} au/ {m ho} au _{ig}$	0.48	0.37	0.45	0.44
P Gbar*	124	76	111	94
χ^3 /ITFx	0.11/0.12	0.05/0.046	0.09/0.09	0.09/0.09

OMEGA shot	67290	67289	67288	67291
P $ au$ atm/s	3.6	3.5	3.1	3.3
$\chi\equiv {m P} au/ {m P} au _{ig}$	0.086	0.082	0.080	0.083
P Gbar	34	33	29	31

SCALING FROM OMEGA TO DIRECT-DRIVE NIF (assume symmetric drive and similar laser smoothing)

TC10256

One-dimensional implosion similarity requires equal Mach numbers

- The shell implodes with V_i and expands with C_s
- The Mach number $\frac{V_i}{C_s}$ is the only dimensionless parameter
- Use isentropic implosion condition $P_a \sim \alpha \rho^{5/3}$
- 1-D similarity requires equal Mach numbers

FSC

Multidimensional implosion similarity imposes additional requirements on entropy and velocity FSE

- The multidimensional behavior is determined primarily by the Rayleigh–Taylor (RT) instability
- Number of e-foldings of RT growth* for wave numbers $k \approx \frac{\ell}{R}$

$$N_{e}^{\mathsf{RT}} = \int_{0}^{t_{i}} \gamma_{\mathsf{RT}} dt = \int_{0}^{t_{i}} \left(\sqrt{kg} - 3kV_{a} \right) dt = \int_{0}^{1} \left(\sqrt{\ell \frac{\ddot{R}}{\dot{R}}} - 3\frac{\ell}{\dot{R}} \frac{V_{a}}{V_{i}} \right) d\tau$$

• Similar implosions have the same dimensionless R: $\hat{R} = \frac{R}{R_0}$

• 3-D similarity requires same
$$\rightarrow \frac{V_a}{V_i} = \frac{\dot{m}_a}{\rho V_i} \sim \frac{\dot{m}_a(I_L)}{P_a(I_L)^{3/5}} \frac{\alpha^{3/5}}{V_i}$$

Hydrodynamic similarity leads to geometric and energy scaling of implosion performance

• 1-D hydrodynamic similarity
$$\rightarrow$$
 Mach² $\sim \frac{V_i^2}{\alpha^{3/5} P_a (I_L)^{2/5}}$ 1

UR 🔌

• 3-D hydrodynamic similarity
$$\rightarrow \frac{V_a}{V_i} \sim \frac{\dot{m}_a(I_L)}{P_a(I_L)^{3/5}} \frac{\alpha^{3/5}}{V_i}$$
 (2)

• Laser-energy requirement

$$\frac{4\pi}{3}P_aR_0^3 = \eta E_L \approx \eta 4\pi R_0^2 I_L \frac{R_0}{V_i} \longrightarrow P_a(I_L)V_i \approx 3\eta I_L \qquad (3)$$

• Three constraints for V_i , α , $I_L \rightarrow$ hydrodynamic equivalence requires same V_i , α , I_L

Hydrodynamic equivalence:

Fixed $V_i, \alpha, I_L, \rightarrow E_L \sim R^3, P_L \sim R^2, M \sim R^3, \Delta \sim R, t \sim R$

Targets and laser pulses are designed for OMEGA to reproduce direct-drive NIF hydrodynamics FSC

TC10267

Ignition theory and hydro-similarity provide the energy scaling of critical parameters

- Energy scaling* of areal density, ion temperature, and fuel mass for hydro-equivalent implosions
 - $\rho R \sim E^{0.33}$ $T \sim E^{0.07}$ $M_{\text{fuel}} \sim E$
- Energy scaling for neutron yield without burn (no alphas)

 $Y_n^{no\,\alpha} \sim E^{1.5}$

• Energy and YOC scaling for ignition parameter and ITFx

$$\frac{\chi_{3-D} \sim E^{0.37} \text{ YOC}^{0.4}}{\left(\frac{E_{\text{NIF}}^{1.8 \text{ MJ}}}{E_{\Omega}^{26 \text{ kJ}}}\right)^{0.37}} \approx 5 \qquad \left(\frac{E_{\text{NIF}}^{1.8 \text{ MJ}}}{E_{\Omega}^{26 \text{ kJ}}}\right)^{1.3} \approx 220$$

Hydro-equivalent ignition on OMEGA requires $\chi \equiv P\tau/(P\tau)_{ig} \approx 0.16$

- The energy and YOC scaling is $\chi_{3-D} \sim E^{0.37}$ YOC^{0.4}
- Expect YOC improvement of 2× on NIF versus OMEGA because of larger hot-spot size, more beams, and equal ice roughness (see back-up slides for details)

 $\textbf{YOC}_{\textbf{NIF}} \sim \textbf{2} \times \textbf{YOC}_{\Omega}$

• Apply OMEGA-to-NIF scaling

$$\chi_{DD}^{1.8\,MJ} \approx \chi_{\Omega}^{26\,kJ} \left(\frac{1800\,kJ}{26\,kJ} \right)^{0.37} 2^{0.4} \approx 1$$

 $\chi^{eq}_{\Omega}^{-ignition} pprox 0.16$

Hydro-equivalent implosions are designed using current OMEGA targets (but with better performance)

The time evolution of implosion velocity and IFAR are the same for the NIF and OMEGA

The 1-D areal density and no-burn neutron rate scale as predicted

The requirements for hydro-equivalent ignition at 26 kJ are confirmed by simulations

Summary/Conclusions

Inertial confinement fusion (ICF) ignition theory is used to assess National Iginition Facility (NIF) experiments and design ignition-scalable implosions on OMEGA

- ICF ignition theory is used to derive performance parameters that can be measured in experiments
- The theoretical results can be easily related to the Lawson criterion
- Applications to NIF indirect drive implosions show $P\tau$ up to 18 atm s, and pressures up to ~125 Gbar (~350 Gbar is required for ignition)
- Hydrodynamic scaling is used to design direct-drive similarity experiments between OMEGA and the NIF
- OMEGA implosions that scale to ignition at NIF energies require an areal density of ~0.3 g/cm² and a neutron yield of ~4 × 10¹³ (a 1.6× improvement in areal density and 3× improvement in yield with respect to best implosion to date)

Hydrodynamic scaling indicates lower 3-D degradation in performance on NIF versus OMEGA

• Yield-over-clean (YOC): the required YOC on OMEGA is difficult to estimate. Use simple clean volume analysis:

$$\begin{array}{ccc} R_{3\text{-}D} = R_{1\text{-}D} - \Delta R_{RT} & \Delta R_{RT} \sim \sigma_0 \, \mathsf{G}_{RT} & \mathsf{G}_{RT}^{\mathsf{NIF}} \approx \mathsf{G}_{RT}^{\Omega} \\ & \uparrow & \uparrow & \uparrow & \\ \hline \mathsf{RT} \text{ spike amplitude} & \mathsf{Initial seed} \ \hline \mathsf{Growth factor} & \mathsf{Hydro-equivalency} \end{array}$$

$$\text{YOC}_{\text{NIF}} \approx \left[1 - \frac{\sigma_0^{\text{NIF}}}{\sigma_0^{\Omega}} \left(\frac{\boldsymbol{E}_L^{\Omega}}{\boldsymbol{E}_L^{\text{NIF}}}\right)^{1/3} \left(1 - \text{YOC}_{\Omega}^{1/3}\right)\right]^3$$

A YOC of 30% on OMEGA extrapolates (approximately) to a 60% YOC on NIF

- Seeds for the RT come from the ice roughness and the laser nonuniformities: $\sigma_0\approx\sqrt{\sigma_{ice}^2+\sigma_{laser}^2}$
- Beta layering makes NIF targets as smooth as OMEGA's: $\sigma_{ice}^\Omega pprox \sigma_{ice}^{NIF}$
- Laser nonuniformities grow with size $(E_L^{1/3})$ and are reduced by a larger number of overlapping beams (N_b) $\sigma_{laser} \sim E_L^{1/3} N_b^{-1/2}$

The heat and radiation energy lost by the hot spot does not propagate through the dense cold shell; no heat or radiation flux at the hot-spot boundary

The clean volume analysis is validated by comparing 2-D simulations with inner-surface roughness and 1-D simulations having reduced $\langle \sigma \nu \rangle \rightarrow \langle \sigma \nu \rangle V_{clean} / V_{1-D} \approx \langle \sigma \nu \rangle YOC^{no} \alpha$

• In the 1-D simulations, $\langle \sigma \nu \rangle$ is reduced by the YOC (or clean volume fraction) until the hot-spot temperature reaches 10 keV.

Physics other than hydrodynamics (based on purely theoretical extrapolations)

