

Gyrokinetic Instabilities near an Evolving Tokamak H-Mode Pedestal

<u>C M Roach</u>, D Dickinson, S Saarelma, R Scannell, A Kirk and H R Wilson

Acknowledgements:

J W Connor, R J Hastie + computer access to HECToR, HPC-FF and Helios.

24th IAEA FEC, San Diego, October 2012

Outline

- 1. Need for Gyrokinetics to Improve Pedestal Models
- 2. Plasma Profile Evolution between Type I ELMs in MAST
- 3. Local GK analysis of ELM cycle, $k_y \rho_i \sim O(1)$
 - microtearing (MTM) and kinetic ballooning (KBM)
- 4. MTM/KBM Transition at Pedestal Top
 - inward advance of pedestal?
- 5. Drive Mechanism for Microtearing at MAST Edge
- 6. Conclusions

2

1. Need for Gyrokinetics in Pedestal Models

Understanding the Edge Pedestal will help:

- optimise confinement in the core
- develop strategies to tame the ELM

State-of-the Art Model is EPED: [1]

- kinetic ballooning+MHD peeling ballooning \Rightarrow predicts P_{ped} , Δ_{ped} prior to ELM
- EPED agrees with many measurements from prior to type-I ELMs
- EPED does NOT describe:
 - > full details of how pedestal profiles evolve
 - > T_{ped}, n_{ped} as required by core transport models

More Complete Model:

must describe all edge transport processes

Role for Gyrokinetics:

- unveil microinstability mechanisms influencing pedestal evolution
- determine turbulent fluxes

[1] P B Snyder et al, Phys. Plasmas 16, 056118 (2009)

3

1. Gyrokinetics at Edge is Challenging

Extensive physics required for high fidelity in edge GK:

 $\succ \delta B$, collisions, strong shaping, impurities, flow

GK expansion parameter ρ_i/L_{eq} larger than in core, i.e. weak separation between turbulence and equilibrium length scales

L_{eq} varies across radial turbulence correlation lengths ⇒global simulations desirable

Neutrals influence edge plasma, and not included in GK.

4

. . .

1. MAST Plasma Evolution Measured over ELM cycle

"What can we learn by Pushing Local GK to the Limit?"

2: MAST ELM cycle Profile Evolution: low T_e^{ped}

- sort profiles in elapsed time since last ELM t= (time-time_{lastELM})/τ_{FLM}
- 5 bins: t=0-0.2, 0.2-0.4, 0.4-0.6, 0.6-0.8, 0.8-1.0
- fit mean binned profiles (mtanh)

Evolution over ELM cycle:

- $n_e^{}$, $P_e^{}$ have similar evolution
 - T_e evolution modest
- high dP_e/dr, dn_e/dr at separatrix after ELM then expand inwards with Max(gradient) staying ~constant
 - [1] Dickinson et al, PPCF 53, 115010 (2011)

2: Profiles during MAST ELM cycle: high T_e^{ped}

T_e^{ped}~300eV υ_{*e}(Ψ_N=0.94)~0.5

Lower gas puff:

reduces collisionality in edge

ELM cycle profile evolution similar to low T_e^{ped} :

pedestal in **T_e also expands inwards**

2: MAST Equilibria for Stability Analysis

Equilibria +MHD analysis for **low T**_e^{ped} discussed in [1]

[1] Dickinson et al, PPCF **53**, 115010 (2011)

8

2: Local GK Analysis

Local linear GK analysis using GS2 [1]

- full δB, general shaping, collisions [2]
- neglect flow (may be important in pedestal)

[1] Kotschenreuther *et al*, Comp Phys Comm **88** 128 (1995)
[2] Barnes *et al*, Phys Plasmas **16** 072107 (2009)

Microstability analysis on surfaces spanning plateau/pedestal:

• focus on ion scales: $0.1 < k_v \rho_i < 5$

3: Local GK Results at Low T_e^{ped}

[1],[2]

δB crucial for dominant microinstabilities (β scans)

• Pedestal: Kinetic ballooning modes (KBMs) ($k_v \rho_i < 1, \omega > 0$)

> NB ideal MHD $n=\infty$ ballooning modes also unstable

• Plateau: Microtearing modes (MTMs) * $(k_v \rho_i > 1, \omega < 0)$

* similar MTMs unstable in JET plateau Saarelma et al, TH/P3-10 (Wednesday)

[1] Dickinson et al, PPCF **53**, 115010 (2011) [2] Dickinson et al, PRL **108**, 135002 (2012)

2012

THE UNIVERSITY of York SCEFE

3: Microinstability Evolution Low T_e^{ped} t=0.1

3: Microinstability Evolution Low T_e^{ped} t=0.3

3: Microinstability Evolution Low T^{ped} t=0.5

3: Microinstability Evolution Low T_e^{ped} t=0.7

3: Microinstability Evolution Low T_e^{ped} t=0.9

3: Microinstability Evolution at High T_e^{ped}

MTMs dominate plateau

• γ^{MTM} through ELM cycle.

KBMs at marginal stability on knee of P(r)

stable in high T_e^{ped} pedestal

KBMs more stable in pedestal because:

- $J_{bs} \uparrow \Rightarrow$ magnetic shear s \Downarrow
 - \Rightarrow approach/access 2nd stability
- high T_e^{ped} has stronger stabilisation as higher J_{bs} at lower collisionality

$n = \infty$ ideal ballooning

4. Why does Pedestal Expand Inwards?

Artificial scan to mimic pedestal advance on a \Rightarrow <u>scale</u> [β ', R/L_{ne}] by β'_{fac} at <u>fixed</u> [n_e , $T_{e,i}$, R/L_{Te,i}] (motivated by measured profile evolution at low T_e^{ped})

NB similar MTM/KBM transition also in high T_p^{ped}

4. Limits to Inwards Pedestal Expansion?

5. Exploring Mechanism for Edge MTMs

MTMs previously reported in core of STs, conceptual high performance devices, and conventional devices [1-6]

- drive mechanism poorly understood [1]
- Investigate edge MTM to improve understanding [7]
 - edge MTM Φ efunc. less extended in θ .

- Circular s- α model fit to MAST edge
- unstable to similar MTMs
- convenient reference to study edge MTM

[1] Applegate *et al*, PPCF **19**, 1113, (2007 [4] Kotschenreuther *et al*, NF **40**, 677, (2000 [7] Dickinson *et al*, submitted to PPCF [2] Applegate *et al*, PoP **11**, 5085, (2004) [5] Wilson *et al*, NF **44**, 917, (2004) (2012) <u>http://arxiv.org/abs/1209.3695</u>
 [3] Wong *et al*, PoP **15**, 056108, (2008) [6] Told *et al*, PoP **15**, 102306, (2008)

5. Influence of Trapping and Collisions

Growth rate at peak of MTM spectrum, γ^{MTM} , versus $\varepsilon,\,\nu_e$

High ϵ (trapped fraction) is destabilising. At low ϵ , γ^{MTM} peaks at **finite** $v_{e'}$ and MTM **stable** at low v_{e} At high ϵ , γ^{MTM} **peaks** at low v_{e}

Collisions not essential to edge MTM drive. [1] Catto *et al*, Phys Fluids **24**, 243, (1981) NB leading analytic theories require **finite** v_e [1,2] [2] Drake *et al*, Phys Fluids **20**, 1341, (1977)

5. For More on Drive Study

See:

- Dickinson *et al*, submitted to PPCF (2012) <u>http://arxiv.org/abs/1209.3695</u>
- Poster TH5-1, Tomorrow am (Friday)

6. Conclusions

- Plasma profile evolution measured in MAST over ELM cycle:
 - steep dP/dr, dn_e/dr* form rapidly after ELM near separatrix, then advance into core
 *and dT_e/dr at high T_e^{ped}
- Local GK reveals corresponding microstability evolution, k_νρ_i ~O(1)
 - MTMs dominate in plateau
 - KBMs most unstable near knee of pressure profile more stable* in pedestal due to J_{bs} *stable at high T_e^{ped}
- MTM/KBM transition at knee
 - MTM stabilised by $dn_e/dr\hat{U} + dP/dr\hat{U}$ until... KBM unstable.
 - b transition may assist inwards advance of pedestal
 - knee of fully developed pedestal close to threshold where
 MTMs+KBMs are strongly unstable over broad k_v range
- Edge MTMs studied in simplified circular s- α model equilibrium
 - large ϵ (or trapped fraction) is destabilising
 - > at large ϵ MTMs do not need finite v_e

2012

Extra Slides

5. Comparing Frequencies*

Mode frequency, ω , compared with:

- trapped e bounce frequency, ω_b
- trapped e precession frequency, $\langle \omega_d \rangle$

- $\omega \sim \langle \omega_d \rangle$ for thermal trapped electron \Rightarrow drift resonance?
- $\omega \sim O(\omega_b)$
 - \Rightarrow bounce averaging unsuitable for trapped particle response

Dominant Modes in Pedestal: KBMs

Consider dominant mode at t=0.5, Ψ_n =0.98, $k_y \rho_i$ =0.218

 $\boldsymbol{\beta}$ scan shows classic KBM signature

- $\beta_{exp} > \beta_{crit}$
- δ**B** essential
- (electrostatic mode at low β)

KBM driven by any source of dP/dr:

- R/L_n, R/L_{Te,} R/L_{ti}
- \Rightarrow transport in all channels

Dominant Modes in Plateau: MTMs

kγp;

Consider dominant mode at t=0.5, Ψ_n =0.95, $k_v \rho_i$ ~3

(electrostatic mode at low β)

THE UNIVERSITY of York 送 CCFE

Evolution of \gamma Spectrum on Surfaces

