Fully Noninductive Scenario Development in DIII-D Using New Off-Axis Neutral Beam Injection

by C.T. Holcomb

With

J.R. Ferron², J.M. Park³, F. Turco⁴, T.C. Luce², T.W.Petrie², R.J. Buttery², P.A. Politzer², M.J. Lanctot¹, J.M. Hanson³, M. Okabayashi⁵, Y. In⁶, W.W. Heidbrink⁷, R.J. La Haye², A.W. Hyatt², T.H. Osborne², L. Zeng⁷, E.J. Doyle⁸, T.L. Rhodes⁸, A.M. Garofalo², M.A Makowski¹, M.A. Van Zeeland²

¹Lawrence Livermore National Laboratory
²General Atomics
³Oak Ridge National Laboratory
⁴Columbia University
⁵Princeton Plasma Physics Laboratory
⁶Far Tech, Inc.
⁷Univiersity of California, Irvine
⁸University of California, Los Angeles

Presented at 2012 IAEA Fusion Energy Conference San Diego, California

October 8-13, 2012

This work was supported by the US Department of Energy under DE-AC52-07NA27344, DE-FC02-04ER54698, DE-FG02-04ER54761, DE-AC02-09CH11466, DE-FG02-08ER85195, DE-FG02-08ER54984, DE-AC05-00OR22725, and SC-G903402.

<u>Main Results</u>: DIII-D is Using Off-Axis NBI to Develop Elevated q_{min} Scenarios for High β_N , Steady State Operation

Steady State Operation Needs Motivate Broad Current Profiles & High q_{min}

Steady State Operation Needs Motivate Broad Current Profiles & High q_{min}

Steady State Operation Needs Motivate Broad Current Profiles & High q_{min}

Modeling Shows Both Broad Current and Broad Pressure Profiles Are Important for Raising the Ideal-Wall β_{N} Limit

Corsica/DCON Modeling: 2 Separate Studies

121-12/CTH/rs

In 2010-2011, One Beamline Was Modified to Allow Off-Axis Injection

Measurements of NBCD in MHD-Free H-modes Agree With Classical Model Predictions

Dα imaging of off-axis beams confirmed geometry & power for inclusion in NUBEAM model

- $\beta_N < 2.3$, monotonic q, $q_0 \sim 1.1$
- Measure $J_{NBI} = J_{tot} J_{BS} \sigma_{neo} d\psi/dt$
- No obvious anomaly related to microturbulence
- See poster, EX/P2-13

8

CTJ Holcomb/IAEA/Oct. 2012

q_{min} > 2 Sustained With Broader Pressure Profile Using Off-Axis NBI and Additional ECCD Power

Experiment to Push to High β_N : With q_{min} >2, β_N ≈3.2 Was Achieved & Limited By Available Power, Not Stability

- No ideal modes
- Tearing modes

- 2/1
 nonexistent

- 3/1 avoided
 by optimizing
 discharge
 evolution
- 7/2 & 5/2
 reduce τ_E by
 ~15% when
 present

Ideal MHD Stability Analysis of Experimental Equilibria Shows Accessing Broader Profiles Raised the β_N Limit

^{121-12/}CTH/rs

Highest q_{min} Plasmas Have $H_{89} < 2$: Less Than Typical H-Mode Global Confinement

CTJ Holcomb/IAEA/Oct. 2012

Off-Axis Injection Itself Results in Only a Small Reduction in Confinement Time

- 2 discharges compared at equal β_N
- Both with q_{min} ≈ 1.1
- Discharge with all on-axis injection requires 10% less total power
 - Off-axis injection reduced τ_E by 10%
 - − H₈₉ (≈2.3) reduced by 5%

– Puts power at radius with higher χ

121-12/CTH/rs

High q_{min} Plasmas With Off-Axis NBI Have H₉₈ > 1: Typical H-Mode Level Thermal Confinement

121-12/CTH/rs

Enhanced Fast Ion Transport May Contribute to Lower H_{89} at the Highest q_{min}

 At high qcore, total stored energy computed by ONETWO transport code exceeds that measured by EFIT unless anomalous fast ion transport is included

Exceptions With q_{min} >2, H_{89} >2, and High β_N Do Exist

No off-axis beams used

- Transient generation of very broad current profiles with a B₇-ramp, high density, low q₉₅ (Garofalo, Phys. Plasmas 2006)
- Comparison in progress to identify most important differences for $\tau_{\rm E}$

For ITER & FNSF-AT, a Relaxed High q_{min} Constraint May Still Meet the Steady State Mission Goals

- Off-axis CD maintains quasistationary q_{min}≈1.5 scenario with good H₈₉
- Stable to 2/1 modes for 2 current profile relaxation times
- Improves confidence equilibrium will not evolve to unstable state

At β_N =3.5, the Current Profile is Nearly Stationary Even With ~25% of I_P Driven Inductively

With More Power, $q_{min} \approx 1.5$ Scenario Has Margin For Improvement – Higher β_N & Full Noninductive Current Drive

- 13-30% below predicted idealwall limit
- Residual Ohmic current is peaked – fill in with BS, NB, & EC
- Must still avoid pressure peaking that can reduce stability

CTJ Holcomb/IAEA/Oct. 2012

q_{min}≈1.5 Scenario Appears Compatible With Radiating Mantle Technique for Divertor Heat Flux Reduction

- Neon injected into private flux region
- *P_{RAD}* doubles without significant performance degradation

Conclusions

- Off-axis beams sustain more advanced profiles with better stability
 - q_{min} >2 with broad pressure: predicted ideal-wall β_N limits increased
 - ITER-sized Q=5 equivalent, ~75% noninductive scenario tested to $2\tau_R$ for tearing stability and is compatible with radiative divertor
- Achieving high β_N with q_{min} >2 will require optimizing for good τ_E
 - Need to explore how to reduce fast ion transport in high q_{min} or compensate with higher thermal confinement, e.g. optimize q-shear
 - Future optimization will benefit from increased heating and current drive power and flexibility

DIII-D Proposed Upgrades Will Enable Optimization of Steady State Scenarios

22

SAN DIEGO

