

Supported by



### **Overview of Physics Results from the National Spherical Torus Experiment**

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics** ORNL PPPL **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Marvland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

V2.4t

### S. A. Sabbagh

### **Columbia University**

for the NSTX-U Research Team

#### 24<sup>th</sup> IAEA Energy Fusion Conference

#### **October 9th**, 2012

#### San Diego, California



Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA. Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep

Office of

# NSTX research targets predictive physics understanding needed for fusion energy development facilities

### Enable devices: ST-FNSF, ST-Pilot/DEMO, ITER

Leveraging unique ST plasmas provides new understanding for tokamaks, challenges theory

### <u>Outline</u>

- Develop key physics understanding to be tested in unexplored, hotter ST plasmas
  - Study high beta plasma transport and stability at reduced collisionality, for extended pulse
  - Prototype methods to mitigate very high heat/particle flux
  - Move toward fully non-inductive operation

3D effects are pervasive in this research



### Outline

### Transport and stability at reduced collisionality

- Pedestal transport
- **\Box** High  $\beta$  pulse sustainment, disruptivity, and warning algorithms
- Energetic particles, power handling and first wall
- Non-inductive current and NSTX-Upgrade scenarios

## $\tau_{\rm E}$ scalings unified by collisionality; nonlinear microtearing simulations find reduced electron heat transport at lower $\nu$

#### Experiment





- □ Increase in  $\tau_{E}$  as  $v_{e}^{*}$  decreases
- Trend continues when lithium is used Kaye EX/7-1



- □ Quantitatively predicted  $\chi_e$ , scaling ~  $\nu_e^{1.1}$ consistent w/experiment ( $\Omega \tau_E \sim B_t \tau_E \sim \nu_e^{*-0.8}$ )
- Transport dominated by magnetic "flutter"
  - Significant  $\delta B_r / B \sim 0.1\%$

**Guttenfelder TH/6-1** 

□ NSTX-U computed to extend studies down to < 1/4 of present  $v^*$ 

# Plasma characteristics change nearly continuously with increasing lithium evaporation; reach kink/peeling limit

Norm. surface avg. current



- Global parameters generally improve
  - With no core Li accumulation Podesta EX/P3-02
- ELM frequency declines to zero
- Edge transport declines
  - □ As lithium evaporation increases, transport barrier widens, pedestal-top  $\chi_e$  reduced

Maingi EX/11-2

Canik EX/P7-16



New bootstrap current calculation (XGC0 code) improves agreement with profile reaching kink/peeling limit before ELM

Chang TH/P4-12

**Diallo EX/P4-04** 

## Experiments measuring global stability vs. v further support kinetic RWM stability theory, provide guidance for NSTX-U



- $\hfill\square$  Two competing effects at lower  $\nu$ 
  - Collisional dissipation reduced
  - Stabilizing resonant kinetic effects enhanced (contrasts early theory)
  - Expectations at lower v
    - More stabilization near ω<sub>φ</sub> resonances;
       almost no effect off-resonance
  - J. Berkery et al., PRL 106 (2011) 075004

#### Exp: Resonant Field Amplification (RFA) vs v



(trajectories of 20 experimental plasmas)

Berkery EX/P8-07

- Mode stability directly measured in experiment using MHD spectroscopy
  - Decreases with v at lower RFA ("on resonance")
  - Independent of v at higher RFA ("off resonance")

NSTX-U 24th IAEA Fusion Energy Conference: Overview of Physics Results from NSTX (S.A. Sabbagh, for the NSTX Team) Oct 9th, 2012

RFA =

### Outline

### Transport and stability at reduced collisionality

### Pedestal transport

**\Box** High  $\beta$  pulse sustainment, disruptivity, and warning algorithms

Energetic particles, power handling and first wall

Non-inductive current and NSTX-Upgrade scenarios

# BES measured low-*k* turbulence in ELM-free H-mode pedestal steep gradient region is most consistent with TEMs



- Measurements during MHD quiet periods, in steep gradient region
- Large poloidal correlation lengths
  - **a**  $k_{\theta} \approx 0.2$ -0.4 cm<sup>-1</sup> and  $k_{\theta} \rho_i \approx 0.2$

Smith EX/P7-18

### Turbulence measurements in the steep

- gradient of the pedestal
  - Most consistent with Trapped Electron Modes
  - $\hfill \square$  Partially consistent with KBM and  $\mu\text{-Tearing Modes}$
  - Least consistent with ITG Modes

## Pedestal width scaling differs from tokamaks; turbulence correlation measurements consistent with theory



- Pedestal width scaling  $\beta_{\theta}^{\alpha}$  applies to multiple machines
- □ In NSTX, observed ped. width is larger
  - **D**ata indicates stronger scaling:  $\beta_{\theta}$  vs.  $\beta_{\theta}^{0.5}$
  - Examining possible aspect ratio effects

#### Diallo EX/P4-04



- Measured correlation lengths at pedestal top are consistent with theory
  - BES and reflectometry
    - spatial structure exhibits ion-scale microturbulence ( $k_{\perp}\rho_i \sim 0.2 0.7$ )
    - Compatible with ITG modes and/or KBM

A. Diallo, C.S. Chang, S. Ku (PPPL), D. Smith (UW), S. Kubota (UCLA)

NSTX-U 24th IAEA Fusion Energy Conference: Overview of Physics Results from NSTX (S.A. Sabbagh, for the NSTX Team) Oct 9th, 2012 9

### A 30% increase in L-H power threshold is found at high vs. low triangularity, consistent with X-transport theory

- X-point location is a hidden variable for L-H power threshold scaling (P<sub>LH</sub>)
- P<sub>LH</sub> increases by 30% for high-δ vs. low-δ shape
- Consistent with predictions of X-transport theory (kinetic neo-classical transport)

**Battaglia EX/P5-28** 

High triangularity Low triangularity Critical shear rate is satisfied for both shapes when core heating is 30% larger for high triangularity shape



### Outline

- Transport and stability at reduced collisionality
- Pedestal transport
- **\Box** High  $\beta$  pulse sustainment, disruptivity, and warning algorithms
- Energetic particles, power handling and first wall
- Non-inductive current and NSTX-Upgrade scenarios

# Stability control improvements significantly reduce unstable RWMs at low $I_i$ and high $\beta_N$ ; improved stability at high $\beta_N/I_i$



- Disruption probability reduced by a factor of 3 on controlled experiments
  - □ Reached 2 times computed n = 1 no-wall limit of  $\beta_N/l_i = 6.7$



- Mode stability directly measured in experiments using MHD spectroscopy
  - Stability decreases up to  $\beta_N/l_i = 10$
  - **D** Stability <u>increases</u> at higher  $\beta_N/l_i$
  - Presently analysis indicates consistency with kinetic resonance stabilization
     Berkery EX/P8-07

### Disruptivity studies and warning analysis of NSTX database are being conducted for disruption avoidance in NSTX-U



#### Warning Algorithms

- Disruption warning algorithm shows high probability of success
  - Based on combinations of single threshold based tests



## Improved stability control includes dual field component feedback and state space feedback, improved by 3D effects



(I) NSTX-U 24th IAEA Fusion Energy Conference: Overview of Physics Results from NSTX (S.A. Sabbagh, for the NSTX Team) Oct 9th, 2012 14

### Outline

- □ Transport and stability at reduced collisionality
- Pedestal transport
- **\Box** High  $\beta$  pulse sustainment, disruptivity, and warning algorithms
- Energetic particles, power handling and first wall
- Non-inductive current and NSTX-Upgrade scenarios

# Fast ion redistribution associated with low frequency MHD measured by fast ion $D_{\alpha}$ (FIDA) diagnostic

- □ Caused by n = 1 global kink instabilities
- Redistribution can affect stability of \*AE, RWMs, other MHD
- Full-orbit code (SPIRAL) shows redistribution in real and velocity space
  - Radial redistribution from core plasma
  - □ Particles shift towards  $V_{\parallel}/V = 1$

#### Applied 3D fields alter GAE stability

By altered fast ion distribution (SPIRAL)



 Core localized CAE/GAEs measured in H-mode plasmas (reflectometer)
 Crocker EX/P6-02



#### Change in distribution due to kink mode



# Significant fraction of the HHFW power lost in the SOL in front of antenna flows to the divertor region



- RF power couples to field lines across entire SOL width, not just to field lines connected to antenna components
- Shows importance of quantitatively understanding RF power coupling to the SOL for prediction to future devices
- R. Perkins, et al., PRL 109 (2012) 045001

Perkins EX/P5-40

# Snowflake divertor experiments provide basis for required divertor heat flux mitigation in NSTX-U

- Needed, as divertor heat flux width strongly decreases as I<sub>p</sub> increases
- Snowflake divertor experiments  $(P_{NBI} = 4 \text{ MW}, P_{SOL} = 3 \text{ MW})$ 
  - Good H-mode τ<sub>E</sub>, β<sub>N</sub>, sustained during snowflake operation
  - Divertor heat flux significantly reduced both during and between ELMs
    - during ELMs: 19 to ~ 1.5 MW/m<sup>2</sup>
    - steady-state: 5-7 to ~ 1 MW/m<sup>2</sup>
  - Achieved by a synergistic combination of detachment + radiative snowflake divertor

#### Snowflake divertor in NSTX



#### Soukhanovskii EX/P5-21

# Toroidal asymmetry of heat deposition measured during standard ELMs, but decreases for 3D field-triggered ELMs



□ 2D fast IR camera measurement (6.3kHz), heat flux from TACO code

#### Toroidal asymmetry

- Becomes largest at the peak heat flux for usual Type-I ELMs
- Reduced by up to 50% in ELMs triggered by n = 3 applied fields

Ahn EX/P5-33

### Outline

- Transport and stability at reduced collisionality
- Pedestal transport
- **\Box** High  $\beta$  pulse sustainment, disruptivity, and warning algorithms
- Energetic particles, power handling and first wall
- Non-inductive current and NSTX-Upgrade scenarios

## Plasma discharge ramping to 1MA requires 35% less inductive flux when coaxial helicity injection (CHI) is used



# Non-inductive current fractions of up to 65% sustained in NSTX, >70% transiently; Upgrade projected to achieve 100%



- Maximum sustained non-inductive fractions of 65% w/NBI at I<sub>P</sub> = 0.7 MA
- 70- 100% non-inductive reached transiently using HHFW CD
   G. Taylor (Phys. Plasmas 19 (2012) 042501)
  - S. Gerhardt, et al., Nucl. Fusion 52 (2012) 083020



- 100% non-inductive scenarios found over wide operation range
  - Higher A ~ 1.65 of NSTX-U created in NSTX, vertical stability tested

Menard FTP/3-4

Kolemen EX/P4-28

(I) NSTX-U 24th IAEA Fusion Energy Conference: Overview of Physics Results from NSTX (S.A. Sabbagh, for the NSTX Team) Oct 9th, 2012 22

### **Rapid Progress is Being Made on NSTX Upgrade**



(I) NSTX-U 24th IAEA Fusion Energy Conference: Overview of Physics Results from NSTX (S.A. Sabbagh, for the NSTX Team) Oct 9th, 2012 23

# Continuing analysis of NSTX data targets a predictive physics understanding required for future fusion devices

- **Transport and stability at reduced collisionality** 

  - Nearly continuous increase of favorable confinement with increased lithium
  - Stabilizing kinetic RWM effects enhanced at lower v when near resonances
- Pedestal
  - □ Width scaling stronger than usual  $(\beta_p^{ped})^{0.5}$ ; measured  $\delta n_e$  correlation lengths consistent w/TEMs in ped. steep gradient, non-linear gyrokinetics at ped. top
- Pulse sustainment / disruption avoidance
  - Global stability increased + low disruptivity at high  $\beta_N/I_i$ , advanced mode control
  - Disruption detection algorithm shows high (98%) success rate
- Power handling and first wall
  - Large heat flux reduction from combination of radiative snowflake divertor + detachment; heat asymmetry from ELMs reduced when triggered by n = 3 field
- □ Significant upgrade underway (NSTX-U)
  - Doubled B<sub>T</sub>, I<sub>p</sub>, NBI power; <u>5x</u> pulse length, projected 100% non-inductive sustainment over broad operating range

### **NSTX Presentations at the 2012 IAEA FEC**

| Talks                                                                                |              |         | P                                                            | osters            |                      |
|--------------------------------------------------------------------------------------|--------------|---------|--------------------------------------------------------------|-------------------|----------------------|
| Thursday                                                                             | 2            |         | Tuesday     Lithium program                                  | Ono               | FTP/P1-14            |
| •                                                                                    | Guttenfelder |         | Co-axial helicity injection                                  | Raman             | EX/P2-10             |
| <ul> <li>Progress in Simulating<br/>Turbulent Electron Thermal</li> </ul>            | Gutterneider | I 1/0-1 | Particle code NTV simulation                                 | Kim               | TH/P2-27             |
| Transport in NSTX                                                                    |              |         | Wednesday<br>Bootstrap current XGC                           | Chang             | TH/P4-12             |
|                                                                                      |              |         | Pedestal transport                                           | Diallo            | EX/P4-04             |
| The Dependence of H-mode<br>Energy Confinement and<br>Transport on Collisionality in | Kave         | EX/7-1  | Power scrape-off width                                       | Goldston          | TH/P4-19             |
|                                                                                      | <b>y</b> -   |         | Vertical stability at low A                                  | Kolemen           | EX/P4-28             |
|                                                                                      |              |         | Blob dynamics / edge V shear                                 | Myra              | TH/P4-23             |
| NSTX                                                                                 |              |         | EHOs<br>Core lithium levels                                  | Park<br>Podesta   | EX/P4-33<br>EX/P3-02 |
|                                                                                      |              |         | C, Li impurity transport                                     | Scotti            | EX/P3-34             |
| Friday                                                                               |              |         | Snowflake divertor theory                                    | Ryutov            | TH/P4-18             |
| Friday                                                                               |              |         | Thursday                                                     |                   |                      |
| • Disruptions in the High Beta                                                       | Gerhardt     | EX/9-3  | Divertor heat asymmetry                                      | Ahn               | EX/P5-33             |
| Spherical Torus NSTX                                                                 |              |         | L-H power threshold vs. X pt.                                | Battaglia         | EX/P5-28             |
| Progress on Developing the     Subgrided Takemak for                                 | Monord       | FTP/3-4 | NBI-driven GAE simulations                                   | Belova<br>Crocker | TH/P6-16<br>EX/P6-02 |
|                                                                                      | Menard       | F1F/3-4 | CAE/GAE structure<br>TAE avalanches in H-mode                | Fredrickson       | EX/P6-02<br>EX/P6-05 |
| Spherical Tokamak for                                                                |              |         | Li deposition / power exhaust                                | Gray              | EX/P5-27             |
| Fusion Applications                                                                  |              |         | Liquid lithium divertor results                              | Jaworski          | EX/P5-31             |
|                                                                                      |              |         | RF power flow in SOL                                         | Perkins           | EX/P5-40             |
| Saturday                                                                             |              |         | Snowflake divertor                                           | Soukhanovksii     | EX/P5-21             |
| The Nearly Continuous                                                                | Maingi       | EX/11-2 | Friday                                                       |                   |                      |
| Improvement of Discharge                                                             | 5            |         | Global mode control / physics<br>Edge transport with Li PFCs | Berkery<br>Canik  | EX/P8-07<br>EX/P7-16 |
| Characteristics and Edge                                                             |              |         | Turbulence near OH L-H trans.                                | Kubota            | EX/P7-16<br>EX/P7-21 |
| Stability with Increasing                                                            |              |         | ELM triggering by Li in EAST                                 | Mansfield         | PD                   |
| Lithium Coatings in NSTX                                                             |              |         | Electron-scale turbulence                                    | Ren               | EX/P7-02             |
|                                                                                      |              |         | Low-k turbulence vs. params.                                 | Smith             | EX/P7-18             |

NSTX-U 24<sup>th</sup> IAEA Fusion Energy Conference: Overview of Physics Results from NSTX (S.A. Sabbagh, for the NSTX Team) Oct 9<sup>th</sup>, 2012 25

#### **Supporting slides follow**

# Higher aspect ratio of NSTX-U tested in NSTX, vertical stability growth rate data obtained, compared to simulation



 NSTX Discharges have matched aspect ratio and elongation of NSTX-U (A = 1.65) without performance degradation Vertical Stability Growth Rates vs. A



- Improvements to vertical control capability and understanding
  - Begun to compare measured growth rates to theoretical predictions (Corsica, GSPERT)
  - Improved plasma position observer
  - Modeled use of RWM coils for n=0 control

Kolemen EX/P4-28

## Simulations and lab results show importance of oxygen in the lithium-graphite PMI for pumping deuterium

 Quantum-classical atomistic simulations show surface oxygen plays key role in D retention in graphite

Jaworski EX/P5-31



P. Krstic, sub. to Nature Comm.

- Accordingly, lab results support that Li on graphite can pump D effectively due to O
  - Measurements show 2 µm of Li increases surface oxygen content of lithiated graphite to ~10%
  - deuterium ion irradiation of lithiated graphite greatly enhances oxygen content to 20%-40%
    - In stark contrast, D irradiation of graphite <u>without</u> Li decreases amount of surface O
  - Li acts as an O getter, and the O retains D





#### Kinetic RWM stability theory further tested against NSTX experiments, provides guidance for NSTX-U



- Improvements to physics model
  - Anisotropy effects
  - Testing terms thought small
    - Already good agreement between theory and experiment of marginal stability point improved

- Collisional dissipation reduced
- Stabilizing resonant kinetic effects enhanced (contrasts early theory)
- Expectations at lower v
  - More stabilization near  $\omega_{o}$  resonances; almost no effect off-resonance
    - Active RWM control important

**Berkery EX/P8-07** 

J. Berkery et al., PRL 106, 075004 (2011)