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Recent NSTX results demonstrate that the snowflake divertor (SFD) 
configuration may provide a promising solution for mitigating steady-state and 
transient divertor heat loads and target plate erosion, and project favorably to 
future fusion devices. In NSTX, a large spherical tokamak with high divertor 
heat flux qpeak ≤ 15 MW/m2, q||≤200 MW/m2, steady-state SFD configurations 
lasting up to 0.6 s (10 tE) were obtained using the existing divertor poloidal field 
coils. The SFD geometry significantly increased the plasma-wetted area, the 
parallel connection length, and the divertor volumetric losses compared to the 
standard divertor configuration. The SFD formation led to a stable partial 
detachment of the outer strike point otherwise inaccessible in the standard 
divertor geometry at PSOL=3 MW and ne/nG ~0.6-0.8 in NSTX. Peak divertor 
heat fluxes were reduced from 3-7 MW/m2 to 0.5-1 MW/m2 between ELMs, and 
from 5-20 MW/m2 to 1-5 MW/m2 at peak times of Type I ELMs (D WMHD /
WMHD=7-15 %). H-mode core confinement was maintained albeit the radiative 
detachment, while core carbon concentration was reduced by up to 50 %.  
Additional divertor CD4 seeding increased divertor radiation further. Based on 
the NSTX experiments, the SFD configuration is being developed as a leading 
heat flux mitigation technique for the NSTX Upgrade device. An edge transport 
model based on the two-dimensional multi-fluid code UEDGE favorably projects 
SFD properties to NSTX-U, showing a significant reduction of the steady-state 
peak divertor heat flux from 15  to about 3 MW/m2 expected in 2 MA discharges 
with 12 MW NBI heating. 

Snowflake divertor is a promising solution for mitigating divertor 
heat loads, and projects favorably to future fusion devices 
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Snowflake divertor is a promising solution for mitigating divertor 
heat loads, and projects favorably to future fusion devices 

  Snowflake divertor configuration in NSTX 
•  Core H-mode confinement unaffected, core carbon 

concentration reduced 
•  Pedestal stability modified: suppressed Type I ELMs 

re-appeared  
•  Divertor heat flux significantly reduced 

  Between-ELM reduction due to geometry and radiative 
detachment 

  ELM heat flux reduction due to power sharing between 
strike points, radiation and geometry 

  Snowflake divertor is a leading candidate for 
NSTX-U 
•  Divertor coils enable a variety of snowflakes 
•  In 2 MA, 12 MW NBI-heated discharges  

–  SOL power width λSOL = 3 mm projected 
–  qdiv ≤ 15 - 25 MW/m2 projected in standard divertor 
–  qdiv ≤ 3 MW/m2 projected in snowflake divertor 
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Snowflake divertor geometry takes advantage of 
second-order poloidal field null properties 

  Snowflake divertor configuration 
•  Second-order null 

  Bp ~ 0 and grad Bp ~ 0 (Cf. first-order null: Bp ~ 0) 
•  Obtained with existing divertor coils (min. 2) 
•  Exact snowflake topologically unstable 
•  Deviation from ideal snowflake: σ = d / a 

–  d – distance between nulls, a – plasma minor radius 

snowflake-minus 
 snowflake-plus 

Exact (ideal) 
snowflake 
 

*


+

+


+
+


D. D. Ryutov, PoP 14, 064502 2007 
EPS 2012 Invited, subm. to PPCF 

Standard divertor  Snowflake-minus  Exact snowflake    
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Snowflake divertor geometry has benefits over 
standard X-point divertor geometry 

  Predicted geometry properties in snowflake divertor (cf. 
standard divertor) 
•  Increased edge shear    :ped. stability 
•  Add’l null: H-mode power threshold, ion loss 
•  Larger plasma wetted-area Awet   : reduce qdiv 

•  Four strike points     : share qII 
•  Larger X-point connection length Lx  : reduce qII 

•  Larger effective divertor volume Vdiv  : incr. Prad , PCX 

qpk !
Pheat (1− frad)fout/totfdown/tot(1− fpfr) sinα

2πRSP fexpλq||
fexp =

(Bp/Btot)MP

(Bp/Btot)OSP

Awet = 2πR fexp λq‖
D. D. Ryutov, PoP 14, 064502 2007
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Snowflake divertor configurations obtained with existing 
divertor coils, maintained for up to 10 τE 
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Plasma-wetted area and connection length are 
increased by 50-90 % in snowflake divertor 

  These properties observed in first 30-50 
% of SOL width 

  Btot angles in the strike point region: 
1-2o, sometimes < 1o


Standard divertor   Snowflake-minus 
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Close-loop feedback control of divertor coil currents 
is desirable for steady-state snowflake 

  All configurations are obtained 
reproducibly under feed-forward 
control in NSTX 

  In NSTX 
•  Developed X-point tracking 

algorithm that locates nulls and 
centroid 

•  Algorithm tested on NSTX 
snowflakes successfully 

•  Implementing snowflake control in 
digital plasma control system M.A. Makowski & D. Ryutov, “X-Point 

Tracking Algorithm for the Snowflake 
Divertor”  



9 of 25 V. A. SOUKHANOVSKII, EX/D P5.021, IEAE FEC 2012, San Diego, USA, 8-13 October 2012 

      0

100

200

300

      0.0
0.2
0.4
0.6

      01
2
3
4
5
6
7

0.0 0.2 0.4 0.6 0.8 1.0
0
1
2
3
4
5 Divertor Dα (a.u.)

W_mhd (kJ)

Total carbon inventory
(x 10^19)

Time (s)

141241
141240

σ
n_e / n_G

(a)

(b)

(c)

(d)

Snowflake

Good H-mode confinement properties and core 
impurity reduction obtained with snowflake divertor 

  0.8 MA, 4 MW H-mode  
  κ=2.1, δ=0.8 
  Core Te ~ 0.8-1 keV, Ti ~ 1 keV 
  βN ~ 4-5 
  Plasma stored energy ~ 250 kJ 
  H98(y,2) ~ 1 (from TRANSP) 
  ELMs 

  Suppressed in standard divertor 
H-mode via lithium conditioning 

  Re-appeared in snowflake H-
mode 

  Core carbon reduction due to 
•  Type I ELMs 
•  Edge source reduction 

•  Divertor sputtering rates reduced due 
to partial detachment 
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Core carbon density significantly reduced with 
snowflake divertor 
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Radiative detachment with strong recombination and 
high radiated power observed in snowflake divertor 

  Attached standard divertor - 
snowflake transition - snowflake + 
detachment 

  PSOL ~ 3 MW (PNBI = 4 MW) 
  Qdiv ~ 2 MW  -> Qdiv ~ 1.2 MW

        -> Qdiv ~ 0.5-0.7 MW 

(e) (f) (g) (h)

(a) (b) (c) (d)
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Divertor profiles show low heat flux, broadened C III and  
C IV radiation zones in the snowflake divertor phase 

  Heat flux profiles reduced to nearly 
flat low levels, characteristic of 
radiative heating 

  Divertor C III and C IV brightness 
profiles broaden 

  High-n Balmer line spectroscopy and 
CRETIN code modeling confirm outer 
SP detachment with Te ≤ 1.5 eV,  

      ne ≤ 5 x 1020 m-3 

•  Also suggests a reduction of carbon 
physical and chemical sputtering rates 
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No leading edge PFC tile heating observed at 
shallow magnetic field incidence angles 
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Peak divertor heat flux decreases with stronger 
snowflake effects (lower σ) 

  Deviation from ideal 
snowflake: σ = d / a 
•  d – distance between nulls, 

a – plasma minor radius 

  Clear trends of flux 
expansion, connection 
length, and peak heat flux 
with σ observed 
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Impulsive heat loads due to Type I ELMs are 
mitigated in snowflake divertor 
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ELM peak heat flux strongly decreases with stronger 
snowflake effects (lower σ) 

  H-mode standard divertor 
discharge  

•  WMHD ~ 220-250 kJ 
•  Type I ELMs suppressed by lithium 

conditioning 
•  Occasional ELMs occur 

  In the snowflake phase 
•  Type I ELM (ΔW/W ~ 5-15 %) re-

appeared 
•  ELM peak heat flux lower 

  Theory (D. Ryutov, TH/ P4-18) 
•  Reduced surface heating due to 

increased ELM energy deposition 
time 

•  Convective mixing of ELM heat flux 
in null-point region -> heat flux 
partitioning between separatrix 
branches 
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Good H-mode confinement properties retained or 
slightly reduced with CD4-seeded snowflake divertor 
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Divertor profiles show enhanced radiation and 
recombination zone in snowflake divertor w/ and w/o CD4 
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Divertor heat flux reduced by radiation and/or 
geometry in radiative and snowflake divertors 

Stnadard 
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Radiative divertor w/ CD4 
Snowflake+CD4 
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NSTX Upgrade will address critical plasma confinement and 
sustainment questions by exploiting 2 new capabilities 

TF OD = 40cm




TF OD = 20cm  

 Previous  
center-stack 

 2x higher CD efficiency from larger tangency radius RTAN 
 100% non-inductive CD with q(r) profile controllable by: 

• NBI tangency radius 

• Plasma density 
• Plasma position 

 
 New 2nd NBI Present NBI 

 Reduces ν*  ST-FNSF values to understand ST 
confinement 
• Expect 2x higher T by doubling BT, IP, and NBI heating power 

  Provides 5x longer pulse-length 
• q(r,t) profile equilibration 
• Tests of NBI + BS non-inductive ramp-up and sustainment 

 New 
center-stack 

New center-stack 

 New 2nd NBI 
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Divertor heat flux mitigation options are affected by 
NSTX-U plasma-facing component development plan 

Baseline All Mo PFCs Mo wall 
+ W divertor 

All Mo tiles All  
Mo divertor 

Upper  
Mo divertor 

C 
BN 

C 
BN 

Mo 

C 
BN 

Mo 

  
BN 

Mo Mo Mo 
W 

  Developing PFC plan to 
transition to full metal 
coverage for FNSF-relevant 
PMI development 

  Wall conditioning: GDC, 
lithium and / or boron  

  PFC bake-out at 300-350oC 
  Divertor impurity seeding: 

•  D2, CD4, Ne, Ar with 
graphite PFCs 

•  N2 with molybdenum PFCs 

R. Maingi (ORNL)


  High IP = 2 MA scenarios projected to 
have narrow λq

mid  ~ 3mm 
  Scenarios with high Ip and PNBI are 

projected to challenge passive cooling 
limits of graphite divertor PFCs 
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Snowflake divertor is a leading heat flux mitigation 
candidate for NSTX-U 

  Single and double-null radiative divertors and upper-lower snowflake 
configurations considered 
•  Supported by NSTX-U divertor coils and compatible with coil current limits 
•  ISOLVER modeling shows many possible equilibria 

–  Impact of changing IOH on snowflake minimal  
–  Reduced divertor coil set can be used for snowflakes 

NSTX-U simulation 

NSTX-U double-null NSTX-U double-
snowflake-plus 

NSTX-U double-
snowflake-minus 
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Projections with UEDGE edge multi-fluid model for 
NSTX-U are optimistic 

•  Grids extend from 
psi=0.9 to psi=1.2 

•  STD grid covers 3.1 cm 
outside the separatrix at  
the outer MP 

•  SNF grid covers 3.4 cm 
outside the separatrix at 
the outer MP. 

  Fluid (Braginskii) model for ions and electrons 
  Fluid for neutrals 
  Classical parallel transport, anomalous radial 

transport  
  Core interface: 

•  PSOL90 = 5; 7; 9 MW 

  D = 0.1-0.5 m2/s 
  χe,i = 1-2 m2/s 
  Rrecy = 0.99  
  Carbon 5 % 
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In modeled NSTX-U snowflake configuration magnetic 
geometry shows clear benefits (cf. standard divertor) 
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UEDGE predicts significant divertor heat flux reduction 
and attached conditions in NSTX-U at 12 MW NBI heating 

  Predictions for 12 MW NBI 
case 
•  PSOL=9 MW 
•  Outer divertor attached 

–  Te, Ti ≤ 80 eV 
•  Inner divertor detached 

NSTX-U  
snowflake 
simulation



