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Abstract

Pattern recognition plays an important role and has great potential in fusion data analysis.
However, a drawback is that individual measurements are usually represented as unstruc-
tured points in a Euclidean data space. We argue that a fundamentally probabilistic
approach offers significant advantages. It allows representing the data in a non-Euclidean
probabilistic space, wherein the patterns of interest are much more distinct, simply be-
cause they are based on more information. In this work, we address the identification
of confinement regimes and the establishment of a scaling law for the energy confine-
ment time, using data from the International Global H-mode Confinement Database. We
propose a single-level and a Bayesian multilevel model for capturing the statistical data
uncertainty. We then show that pattern recognition operations working in the associated
probability space are considerably more powerful than their counterparts in a Euclidean
data space. This opens up new possibilities for analyzing confinement data and for fusion
data processing in general.



Pattern recognition opportunities

Dimensionality reduction: data visualization

Clustering/classification: grouping of data points

Regression: (nonlinear) deterministic relation between variables

Objectives
1 Physics from information: contribute to physics studies by extracting

patterns, structure and relations from data
2 Contribute to plasma control through real-time data interpretation



Probability is fundamental

Measurements are uncertain due to a lack of information:

Systematic: estimated through cross-validation

Stochastic: needs probability theory

Traditional measurement: value + error bar

Measurement = sample from underlying (non-Gaussian?) probability
distribution

Goal of measurement = probing the underlying distribution

Probability density function (PDF) contains all information about
measurement

PDF is fundamental object resulting from measurement



Problem statement

Pattern recognition usually operates in Euclidean data spaces with
structureless data points

This neglects additional information in the PDF!

A huge potential remains unexplored: use additional information on
the data to determine patterns:

Data probability distribution
Established theoretical models
Previous experiments

Challenge
To construct a probabilistic pattern recognition framework that exploits all
available information for fast and efficient pattern recognition.

→ Pattern recognition based on non-Euclidean geometry in probability
spaces



Probability + geometry: a happy marriage

Probabilistic manifold:

PDF = point on manifold

Coordinates = PDF
parameters

Distance between PDFs?

Information geometry



Information geometry

Riemannian differential geometry

Fisher information = unique metric tensor:

Parametric probability model: p
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Line element:
ds2 = gµνdθµdθν

Minimum-length curve: geodesic

Geodesic distance (GD)

Natural and theoretically well motivated distance between PDFs



Univariate Gaussian distribution

PDF:

p(x |µ, σ) =
1√
2πσ

exp
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Line element:
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Hyperbolic geometry: Poincaré half-plane model



Poincaré half-plane

p1: µ1 = −4, σ1 = 0.7; p2: µ2 = 3, σ2 = 0.2



ITPA Confinement Database

ITPA Global H Mode Confinement Database (DB3)
ITER H-Mode Database Working Group
D.C. McDonald et al., Nucl. Fusion 47, pp. 147–174, 2007
http://efdasql.ipp.mpg.de/hmodepublic

∼ 104 entries from 19 tokamaks

Approximate error estimates: limited information on PDF!

Assume standard deviations → Gaussian PDFs (maximum entropy)

Different machines → different error estimates: difficult to handle
using classic approach!



Confinement regime classification

Distinguish between L- and H-mode: 3845 L and 6207 H

8 global engineering variables: Ip, Bt, n̄e, Ploss, R , a, Meff , κ

Variables statistically independent → product of Gaussians

Note: this does not exclude the variables to be related through
a deterministic relation!



Gaussian product manifold

Plasma and machine variables: xλ →
→
x , λ = 1, . . . , 8

Distribution parameters: µλ, σλ
Gaussian product distribution:
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Bayesian multilevel model

Introduce additional information on tokamak and database means and
standard deviations for every variable
At the minimum: from which tokamak were data obtained? →
Expected range of variables
Bayesian hierarchical/multilevel model
Conjugate prior distributions for means, maximum-likelihood estimates
for standard deviations

Level Model

1 xλ,ijk ∼ N (xλ,ijk |µλ,jk , σλ,jk)
2 µλ,jk ∼ N (µλ,jk |µλ,k , σλ,k)
3 µλ,k ∼ N (µλ,k |µλ,0, σλ,0)
4 µλ,0 ∼ N (µλ,0|φλ, τλ)
5 φλ ∼ U(−∞,+∞), τλ = 0.1φλ



Multilevel posterior distributions

Bayes’ rule:

p(µλ,jk , µλ,k , µλ,0, φλ|xλ,ijk , ∀j , k)

∼
∏
j ,k

N (xλ,ijk |µλ,jk , σλ,jk)N (µλ,jk |µλ,k , σλ,k)N (µλ,k |µλ,0, σλ,0)

×N (µλ,0|φλ, τλ)

Conditional posteriors for all parameters are also Gaussian, e.g.:
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Estimate parameters via (Gibbs) sampling



Dimensionality reduction for visualization

Step 1. Calculate all pairs of GDs

→ proximity matrix [Dij ]

Step 2. Plot points arbitrarily in 2D Euclidean space

Step 3. Calculate Euclidean proximity matrix [Eij ]

Step 4. Minimize
∑

i ,j(Dij − Eij)
2


Multi-
dimensional
scaling

Step 5. Plot final configuration



Confinement visualization

Euclidean
no errors

Tokamaks Confinement regime

GD
with errors



k-nearest neighbor classification

Confinement mode identification
Training: 1%, testing: 99%
k = 1: nearest neighbor
Correct classification rates (%)

Mode Euclidean Euclidean GD GD
w/o errors with errors single-level multilevel

L 89.7 91.2 91.9 93.2
H 89.1 90.5 93.3 94.3



Energy confinement scaling

Energy confinement time τE:

τE = β0 I β1
p Bβ2

t n̄β3
e Pβ4

loss Rβ5 εβ6 Mβ7
eff κ

β8

=⇒ ln(τE) = ln(β0) + β1 ln(Ip) + β2 ln(Bt) + β3 ln(n̄e) + β4 ln(Ploss)

+ β5 ln(R) + β6 ln(ε) + β7 ln(Meff) + β8 ln(κ)

Question: are all assumptions fulfilled?
See e.g. D.C. Mc Donald et al., PPCF 48, pp. A439–A447, 2006
Several methods:

Simple linear regression: ordinary least squares (OLS)
Errors-in-variables (EIV): total least squares
Geodesic regression (GR)
. . .



Ordinary least squares
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Errors-in-variables
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Geodesic regression (GR)

p
x

p
y

Minimize sum of squared GD
Use geodesic centroid



Synthetic data


y∗ = 0.7 + 1.6x∗

x = x∗ + η, η ∼ N (0, 4)

y = y∗ + ε, ε ∼ N (0, 8)

Original OLS EIV GR

β0 0.70 7.21 8.41 0.28
β1 1.60 0.45 0.23 1.61
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Data and model

DB3 standard data set

Multiplicative Gaussian noise, both dependent and independent

Logarithmic transformation =⇒ additive non-Gaussian noise

Approximate with Gaussian distributions



GR empirical and model distribution

Empirical:
ln(τE) ∼ N (µln τE , σln τE)

Model:

ln(τ∗E) = ln(β0) + β1 ln(I ∗p ) + β2 ln(B∗t ) + β3 ln(n̄∗e) + β4 ln(P∗loss)

+ β5 ln(R∗) + β6 ln(ε∗) + β7 ln(M∗eff) + β8 ln(κ∗)

µln τ∗E = ln(β0) + β1µln I∗p + β2µln B∗
t

+ β3µln n∗
e

+ β4µln P∗
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+ β5µln R∗

+ β6µln ε∗ + β7µln M∗
eff

+ β8µlnκ∗
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µln I∗p ≈ ln(µI∗p ), σln I∗p ≈
σI∗p

µI∗p
...

µlnκ∗ ≈ ln(µκ∗), σlnκ∗ ≈
σκ∗

µκ∗



Regression results
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R2 values:

OLS EIV GR single GR multi OLS in GR single EIV in GR single

0.94 0.97 0.71 0.78 0.44 0.52

GR yields full probability distributions
Precise error estimates are not required, but may improve estimates



Conclusion

Huge potential for pattern recognition in fusion

Physics studies
Plasma control

Probability distributions are maximally informative

Full probability structure actively determines patterns

Geodesic distance is natural

Even approximate probabilities are useful

Very flexible to other probability models

Probability is fundamental
Probability distributions contain useful information for pattern recognition.
Any useful information can be incorporated, including trustable theoretical
models!
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