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Preparation of Steady-State Operation of the 

Introduction 

Optimized stellarator Wendelstein 7-X 

Drift-optimization for good fast ion confinement, improved 
neoclassical confinement 

Minimized Pfirsch-Schlüter and bootstrap currents 

Good equilibrium and stability properties at <β> = 5% 

Low magnetic shear and ι = 1 at plasma boundary for resonant 
magnetic island divertor 

Steady state heating 

Technical parameters 

Magnetic field 
(superconducting): 
3 T 

Magnetic field energy: 
900 MJ 

Plasma volume: 
30 m3 

Pulse duration: 
30 minutes 

Heating power: 
10 MW (30 MW) 

Maximum heat load: 
10 MW/m2 

Assembly, 1st operation phase, 2nd operational phase 

For “Technical Challenges in the Construction of the Steady-State 
Stellarator Wendelsetin 7-X” see talk by Bosch et al. Thursday, Oct 
11th, FTP/3-1    

1st wall cooling equilibrium 1s 

Gas inventory seconds – hours  

Erosion months 

Energy / particle confinement 100 ms 

Fast ion slowing down time 100 ms 

Establishment of a stationary equilibrium: L/R time 30 s 

Characteristic time scales 

ECRH (4 launchers with 3 beams each) 
OP1: 8 gyrotrons simultaneously / 7.5 MW 

NBI (4 PINIs) 

ICRH NNBI 

NNBI 

ICRH 
NBI (4 PINIs) 

OP1: 2 (4) PINIs 
 3.5 (7) MW hydrogen 
 5 (10) MW deuterium 

Steady-state 
(30 minutes) 
ECRH /ECCD (10 
MW) 
140 GHz, 2.5 T 

Pulsed (~ 10 s) 
NBI (≤ 20 MW) 
ICRH (~ 4 MW) 

ECRH facility 

Quasi-optical transmission 
line 

Overall losses ~ 7% 

Improvement of gyrotrons 

RF-absorption in gyrotron shaft reduced 
(temperature rise 7 deg/min limits pulse 
duration to < 30 min, cooling difficult, 
restricted repetition rate 

Collector sweeping improved: vertical + 
transverse 50 Hz, smooth power distrib. 

Diamond Windows 
Water- replaced by oil-Cooling 
(prevent long term corrosion) 

Body-insulation improved (+ 30 kV) 

e-beam tunnel improved  
suppress parasitic oscillations      

≥ 1MW due to improved 
collector sweeping 

Front 
steering 
launcher 

In addition, remote steering launcher from HFS 
2 ports, 1 MW each; LFS ECRH: heating of bulk electrons; HFS ECRH: preferably coupling to fast 
electrons; owing to weak B-gradient in HFS launching plane  tail in distribution function 

Comparison of confinement of different electron distribution 
functions directly related to W7-X optimization 

Plasma heating scenarios 

High density ECRH is essential for making use of the advantages of 
the stellarator (little or no CD requirements) 

At 104 GHz, 1.8 T output power ~ 50% O2, B2 require multi-pass absorption 
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Control and data acquisition 

Convective and radiative loads from the plasma onto 
plasma facing components 

80 kW/m2 plasma radiation 

Dissipation by cooled stainless steel structures, cooled windows and 
apertures, where possible  using pinholes 

For non-continuous plasma observation use of cooled shutters 

Stray radiation protection inside entire plasma vessel 
including ports 

All in-vessel components qualified for 50 kW/m2 corresponding to 
1 MW of non-absorbed microwave power 

Diagnostic specific issues 

Windows, mirrors: Build-up of soft hydrocarbon layers 

Dispersion interferometer (line integrated density): Insensitive 
against vibrations, slow temperature changes and capable of 
measuring fast density changes without loss of signal 

Long pulse digital integrators for magnetic probes 

Steady-state operation adds a completely new level of complexity to 
the diagnostic requirements 

Segmented Rogowski coils 

Stainless steel tubes for stray radiation 
protection 

Wholes (Ø < λ) for vacuum pumping   

Multi-channel 
bolometer detector 
head 

10 times 

30 times 

Bolometer 

Combination of microwave absorber (150µm-Al2O3/TiO2, 83:17) 
and metal-mesh suppresses micro-wave effect by a factor of 300 

Short pulses, steady-state plasmas and arbitrary sequences of phases 
with different characteristics in one plasma pulse 

Scenarios subdivided into segments 

Segment programmes for components of plasma and device control 

If segment is not ready for execution jump into “jump-in” segment 

Variety of segment transition conditions (time, machine state, 
plasma state …) 

Adaptive control segment switch conditions 

Data acquisition 

Test on small stellarator WEGA 

Event driven segment transition to Bernstein wave heating 

Before transition non-resonant magnetron (2.45 GHz) & resonant 
gyrotron (28 GHz, 0.5 T) heating, after transition only gyrotron 
heating is applied 

Switch-off of magnetron as soon as density threshold for OXB 
conversion is reached, indicated by drop of stray radiation signal 
(sniffer probe)  

Steady-state requires supervision of PFCs (visible and IR) 

~ 30 Gbyte/s; ~ 50 Tbyte/30 minutes 

Acquired data are immediately written onto network devices 

One data stream for online data analyses and monitoring purposes 
and a second one for data archiving. 

The data acquisition software development is particularly demanding 
with respect to the reliability of the software for steady-state 
operation 
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Steady-state diagnostics 

Segment based control framework 
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