Improved Understanding of Physics Processes in Pedestal Structure, Leading to Improved Predictive Capability for ITER

October 8-13, 2012

Understanding the H-mode Pedestal Allows Prediction and Optimization of Fusion Power

- High performance (H-mode) operation in tokamaks due to spontaneous formation of an edge barrier or "pedestal"
- Pedestal height has an enormous impact on fusion performance

2

The US-DOE FY11 Joint Research Target was a US-Wide Activity to Improve Understanding of Pedestal

Many Contributors

R.J. Groebner, C.S. Chang, J.W. Hughes, R. Maingi, P.B. Snyder, X.Q. Xu

GA: E.A. Belli, B.D. Bray, J. Candy, T.M. Deterly, N.M. Ferraro, J.E. Kinsey, A.W. Leonard, C. Liu, T.H Osborne, D.M. Ponce, S.P. Smith, G.M. Staebler, R.E. Waltz

Georgia Tech: W.M. Stacey

LLNL: M.E. Fenstermacher, I. Joseph, C.J. Lasnier, M.V. Umansky, E. Wang MIT: R.M. Churchill, I. Cziegler, E. Davis, A.E. Hubbard, B. LaBombard, B. Lipschultz, Y. Ma, J.C. Rost, L. Sugiyama, J.L. Terry, J. Walk, A.E. White, D.G. Whyte, S. Wolfe

ORNL: J. Canik, J.D. Lore, A.C. Sontag

PPPL: D.P. Boyle, A. Diallo, S. Zweben

SNL: J.G. Watkins

Tech-X: A.Y. Pankin

U. Calif. Irvine: D. Fulton, Z. Lin

UCLA: E.J. Doyle, T.L. Rhodes, L. Schmitz, L. Zeng

UCSD: J.A. Boedo, P.H. Diamond, D. Eldon

U. Colo. Boulder: S.E. Parker, W. Wan

U. Toronto: J.D. Elder

U. Wisconsin: J.D. Callen, G.R. McKee, Z. Yan

Identify physics mechanisms

Improve predictive capability

Coordination of experiment, modeling and theory

Results improve confidence that we can predict limits of pedestal pressure

Joint Research Supports a Framework for Physics of Limits to Pedestal Pressure Profile

Kinetic Ballooning Modes Impose an Additional Limit to Pedestal Pressure Gradient

EPED Model Combines PB and KBM Constraints to Predict Maximum Achievable Height and Width

Model Predictions Agree With Observations Within ~20%

Kinetic Codes for Neoclassical Bootstrap Current Have Been Used to Benchmark Simpler Models

- NEO: ~10%–20% differences in the bootstrap current from simplified models
- XGC0: Agreement with Sauter model in banana-plateau regime
 - Some differences in collisional regime
- MIT Global Pedestal DK Code: Agreement with Sauter in banana
 - Some disagreement in plateau [Landreman & Ernst, PPCF 2012]

Peeling-ballooning Models Consistent with Observations of Type I ELMs in All 3 Machines

Diamagnetic effects important for C-Mod

Quantitative threshold for NSTX under study

ELMs in NSTX occur at kink-peeling boundary

Predictions from ELITE, using XGC0 bootstrap current for NSTX

New Version of EPED Model Predicts Width With No Adjustable Parameters

Critical gradient for KBM obtained from model of infinite-n ideal ballooning modes

Predictions in good agreement with C-Mod and DIII-D data

Predictions show aspect ratio dependence

Extension of model to low aspect ratio is work in progress

Predictions: Snyder 2012 IAEA

Pedestal Growth Between ELMS Provides Additional Test of EPED Model and KBM Physics

T.H. Osborne, 2011 H-Mode Workshop

KBM Model Predicts ∇P Evolution Observed Between ELMs

T.H. Osborne, 2011 H-Mode Workshop

P.B. Snyder, Phys Plasmas 19, 056115 (2012)

EPED Model Predicts ∇P Observed During Pedestal Buildup for a Range of Plasma Currents

T.H. Osborne, 2011 H-Mode Workshop

Onset of Density Fluctuations Correlated With Slowing of Pedestal Evolution

14

NATIONAL FUSION FACILIT

SAN DIEGO

KBM Modes Predicted for Realistic Experimental Conditions

GYRO simulations find KBM threshold ~ same as for infinite-n ideal ballooning modes

E. Wang, Nucl. Fusion 52 (2012)

Global EM simulations with GEM predict KBM in two discharges near Type I ELM threshold

W. Wan Phys. Rev. Lett. (2012)

Onset of Density Fluctuations Correlated With Slowing of Pedestal Evolution in EDA Discharge

BOUT++ simulations of EDA H-mode:

∇P_e saturation correlated with strength of QC mode

16

SAN DIEGO

RJ Groebner/IAEA/October 2012

EPED Model Predicts Pedestal Height/Width to ~20% Accuracy for Medium Aspect Ratio Tokamaks

C-Mod data increase maximum pressure for benchmarking by ~ 2X

17

EPED Model Has Been Tested on an International Tokamak Database

Comparison of model to 270 cases on 5 tokamaks

18

ITER Pedestal Predictions and Optimizations are Made With EPED Model

Full Predictive Capability Requires Understanding of Density and Temperature

20

Results From Joint Research Target Activity Support a Framework for How the Pressure Pedestal Works

- Limits to pedestal pressure profile are controlled by peeling-ballooning stability and kinetic ballooning modes
- These physics processes combined in EPED model, which predicts pressure pedestal height in existing machines to ~20% accuracy
- Good confidence that we can predict and optimize pedestal in ITER
- For ITER baseline discharge at $n_{ped} \sim 7x10^{19} \text{ m}^{-3}$, prediction is $T_{ped} \sim 4.5 \text{ keV}$
 - Higher pedestal density is predicted to provide improved performance

