Present Status of Fast Ignition Realization EXperiment (FIREX) and Inertial Fusion Energy Development

Hiroshi AZECHI and FIREX Project Team Institute of Laser Engineering, Osaka University

IAEA2012 2012.10.9.

Fast Ignition Realization EXperiment

So far, 1 keV achieved. Ignition temperature is not yet.

Strategy towards Fusion Power Generation

~2020 λ= 351 nm 92 beam --- 48 beam 50 kJ/3 ns F/8, 15 cm Heating Lase L= 1053 nm 4 beams 50 kJ/10 ps F/5, 100 cm⁶ FIREX-II: Ignition&Burn ~2030 **LIFT: Power Generation**

*Laboratory Inertial Fusion Test

Atomic Energy Commission of Japan reported (Oct. 2005):

"Based on its (FIREX-I) achievement, decide whether it should be advanced to the second-phase program aiming at the realization of ignition and burning"

Are we ready?

Reactor Core Plasma Electron Fast Ignition Impact Ignition Reactor Technology Elements

Alliance

FIREX-I Integrated Exp't

X-ray image from cone side (Time integrated)

Heating time determination

Heating beam (LFEX) injection

Yield and Temperature have exceeded 2002 records.

Neutron Yield Ion Temperature **10**⁹ 10 2010-2011 exp't 2002 results [–] 50/0 2010-2011 exp't lon temperature [keV] 20/ **10⁸** 2002 results DD neutron yield **10**⁻ **10**⁶ **10**⁵ 2009 1ps 2009 1ps • 2009 5ps 2009 5ps 10⁴ ∟ 0.01 0.1 0.1 0.01 0.1 10 10 Laser energy on target [k] Laser energy on target [kl]

The coupling efficiency may be decreased at higher energy.

Magnetic Field Guiding of Hot Electron Stream

Ι

Ι

Can one make high initial B field?

Excess B field of ~kTesla (10 MGauss) is created.

Collimating E-beam by strong- B_{τ}

Divergence, energy distribution and flux of e-beam by using x-ray convertor attached target.

Spectrum, angular distribution, image of x-rays are measured.

Angular distribution of bremsstrahlung x-ray indicates collimation of electron beams by external B-field.

Experimental Evidence of Impact Ignition Azechi *et al.*, PRL **102**, 235002 (2009)

- impactor shell

Initial main fuel shell

Compressed main fuel

Colliding impactor v > 1500 km/s rho > 1-2 g/cc X 20

Impact ignition almost completely eliminates plasma physics uncertainty in fast ignition.

Ignition takes place at 1700-km/s velocity and 50-g/cc impactor density.

100-Fold Increase of Neutron Yield by Impactor Collision

Are we ready?

Reactor Core Plasma Reactor Technology Elements Laser Target injection and tracking Reactor System

Alliance

Pumping: from Flash Lamps to Laser Diodes

Laser Diode

Flash Lamps

Broad emission spectra Inefficient & low rep

Emission matches absorption line

1x1.5 cm^2 5-kW module 15 k\$→500 \$

Two remaining issues: Diode cost, Laser material

High-Rep Laser Program GEMBU

Laser medium: from glasses to ceramic crystal

Laser Glasses

- Glass→Large optics
- Glass \rightarrow Very low thermal conductivity

Yb: YAG Cooled Ceramic Crystal

- Crystal→High thermal cond.
- Ceramic→Large optics

Several 100s increase of thermal conductivity enables 500 Hz rep rate, much higher than reactor requirement.

GENBU-Kid demonstrated 500 Hz operation.

Most Critical Elements of IFE Reactors Have Been Addressed or Demonstrated 、Eミベントイットろよご方式競変空

Injection, Tracking, and Beam Pointing are already demonstrated in EUV project.

ドロップレット3号機 連続照射試験

10 Hz Nd:YAG Laser

Injection, Tracking, and Beam Pointing are already demonstrated in EUV project.

Injection, Tracking, and Beam Pointing are already demonstrated in EUV project.

Industry's Entering into IFE Field

President Emeritus, Shoichiro Toyota, visited ILE, Osaka

Wept injection: >10 Hz, 80 m/s <<mm accuracy

International Alliance on IFE

- After 50 years from the innovation of lasers, it is an eve of the first controlled fusion burn in humankind.
- Compactness of fast ignition will accelerate inertial fusion energy development.
- IFE physic and engineering programs would converge onto an experimental reactor, such as LIFE, HiPER and LIFT, that will lift up people's spirits.

Get Together at IFSA2013 in Nara September 8-13, 2013

Get Together at IFSA2013 in Nara September 8-13, 2013

Get Together at IFSA2013 in Nara September 8-13, 2013

