

Supported by

The nearly continuous improvement of discharge characteristics and edge stability with increasing lithium coatings in NSTX

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics** ORNL PPPL Princeton U Purdue U SNL Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington U Wisconsin X Science LLC

R. Maingi

D. Boyle, J. Canik, S. Kaye, T. Osborne, P. Snyder, M. Bell, R. Bell, C.S. Chang, A. Diallo, T.K. Gray, W. Guttenfelder, M. Jaworski, R. Kaita, H. Kugel, B. LeBlanc, J. Manickam, D. Mansfield, J. Menard, M. Ono, M. Podesta, R. Raman, Y. Ren, L. Roquemore, S. Sabbagh, C. Skinner, V. Soukhanovskii

24th IAEA Fusion Energy Conference 8-13 October 2012, San Diego, CA

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res, Kiev loffe Inst TRINIT Chonbuk Natl U NFR KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep

Office of

Science

FRG

Power and particle exhaust a key challenge for future devices

 Liquid metals are being studied at PPPL as an alternative to solid PFCs for future devices

- NSTX used lithium wall coatings (evaporative and liquid) to test the efficacy of lithium in particle and power exhaust
 - Lithium has effective deuterium retention -> low recycling
 - Lithium will be important research line in NSTX-Upgrade, which is scheduled to commence operation in 2014

Plasma characteristics and edge stability improved nearly continuously with increasing lithium coatings

- Lithium evaporated before discharge; amount scanned
- ELM frequency declined, and eventually went to 0

R. Maingi, PRL 2011 R. Maingi, NF 2012

- Global characteristics changed
 - Recycling: D_{α} declined in all measured views
 - Energy confinement (τ_E , H-factor) improved, consistent with reduced transport at lower v^* W. Guttenfelder, TH/6-1
 - When discharges were ELM-free, radiated power increased with time (we tested several techniques to ameliorate this problem)
- Edge transport declined, stability improved
 - n_e , P_e and P_{tot} profile widths increased with lithium
- J. Canik, EX/P7-16 J. Canik, PoP 2011 D. Boyle, PPCF 2011 C.S. Chang, TH/P4-12 A. Diallo, EX/P4-4
- > No liquid lithium divertor (LLD) in these experiments

M. Jaworski, EX/P5-31

Recycling, neutral pressure, and pressure peaking decreased nearly continuously with increasing lithium; H_{H97L} increased

Energy confinement increased and edge electron transport decreased with pre-discharge lithium evaporation

Edge ion transport increased

R. Maingi, PRL 2011, S. Kaye, IAEA 2012 EX 7/1

TRANSP

SOLPS interpretive simulations indicate particle fueling source from recycling was reduced with lithium

- Target recycling coefficient varied to match peak divertor D_{α}
- Separatrix position adjusted as needed to match divertor peak heat flux

SOLPS interpretive simulations indicate particle fueling source from recycling was reduced with lithium

0.6

n_e (10²⁰ m⁻³) 70 00 70 00

- Target recycling coefficient varied to match peak divertor D_α
- Separatrix position adjusted as needed to match divertor peak heat flux
- Radial profile of D_{eff}, χ_e^{eff}, χ_i^{eff} varied to match midplane n_e, T_e, T_i, for the computed recycling source profile

SOLPS interpretive simulations indicate transport barrier widens with lithium coatings, broadening pedestal

•

SOLPS interpretive simulations indicate transport barrier widens with lithium coatings, broadening pedestal

- Pre-lithium case shows typical barrier region inside separatrix
- Change in n_e profile with lithium from 0.95<ψ_N<1 consistent with drop in fueling at ~ constant transport

(red shaded region)

SOLPS interpretive simulations indicate transport barrier widens with lithium coatings, broadening pedestal

- Pre-lithium case shows typical barrier region inside separatrix
- Change in n_e profile with lithium from
 0.95<ψ_N<1 consistent with drop in fueling at ~ constant transport
- Pedestal is much wider with lithium
 - Low D_⊥, χ_e persist to inner boundary of simulation (ψ_N~0.8)

Transport barrier widens continuously with increasing predischarge lithium, i.e. pedestal-top D, χ_e reduced

500

- Several shots analyzed with SOLPS with increasing lithium (direction of arrow) 400 First three discharges were ELMy, last 300
 →
 200 300 ٠ two ELM-free
 - T_e gradient clamped in last 5% of ψ_N , but • increased from ψ_{N} =0.8-0.95

129015 129022

Work in progress: change in edge density gradient with lithium coatings alters the edge micro-stability properties

Work in progress: change in edge density gradient with lithium coatings alters the edge micro-stability properties

- From ψ_N = 0.95-1, n_e gradient reduced with lithium
 - ETG more unstable, correlates with higher χ_e
- From ψ_N = 0.8-0.95, n_e gradient increased with lithium
 - μT (micro-tearing modes) more stable over outer part of range, correlates with lower χ_e
- Similar to analysis by Dickinson on MAST (e.g. Roach, TH/5-1)

Work in progress: change in edge density gradient with lithium coatings alters the edge micro-stability properties

- From ψ_N = 0.95-1, n_e gradient reduced with lithium
 - ETG more unstable, correlates with higher χ_e
- From ψ_N = 0.8-0.95, n_e gradient increased with lithium
 - μT more stable over outer part of range, correlates with lower χ_e
- Both μT and ETG are plausible candidates – drive transport in electron channel
- E x B shear rate higher w/Li
- These are linear GS2 calcs

 need non-linear calcs for actual heat flux

ELMy discharges closer to kink/peeling stability boundary than ELM-free ones

Boyle, PPCF 2011

ELMy discharges closer to kink/peeling stability boundary than ELM-free ones

Ideal growth rates low: why instabilities not stabilized by diamagnetic flow?

Revised bootstrap current calculation from XGC and extended ELITE calculation (n=1-15) increased growth rates

- ELMy discharges at the ideal instability boundary
- ELM-free discharges still in stable operating space

IAEA FEC 2012 - Maingi EX/11-2

Flowchart broken up into outer (recycling) zone and inner zone

 ψ_{N} from 0.95-1 (recycling region)

What is the role of lithium? To reduce recycling and associated fueling

 ψ_{N} from 0.95-1 (recycling region)

Li coatings reduce recycling and core fueling (SOLPS)

 ψ_{N} from 0.95-1 (recycling region)

ψ_{N} from 0.95-1 (recycling region)

ψ_{N} from 0.95-1 (recycling region)

ψ_{N} from 0.95-1 (recycling region)

ψ_{N} from 0.95-1 (recycling region)

ψ_N from 0.8-0.94

ψ_{N} from 0.95-1 (recycling region)

 ψ_N from 0.8-0.94

First key step is recycling reduction with lithium

 ψ_{N} from 0.95-1 (recycling region)

 ψ_N from 0.8-0.94

The observed 'continuous' dependence was surprising, because we expected only the top monolayers to play a role

- Result surprising because nominal divertor film thicknesses of 60-500 nm obtained during the lithium evaporation scan
- Calculations for NSTX divertor shows ion implantation depth < 5 nm, i.e. << 60 nm – 500 nm coating thickness
 - SO: the effect should was not expected to vary for nominal film thickness > 10 nm
- Possibility uncovered by lab measurements: more lithium results in Oxygen segregation to the surface, which increases the film capacity to retain deuterium J.P. Allain, PoP 2012

Global characteristics changed and edge electron transport declined with increasing Li deposition; ELMs eliminated

- Last 5% of ψ_{N} : recycling source drop leads to drop in density and pressure gradient
 - \succ T_e gradient clamped, consistent with more unstable ETG
 - > Drop in J_{BS} , Stabilizing to kink/peeling modes
- ψ_N from 0.8-0.95: particle transport drops
 - \succ T_e gradient increased, consistent with more stable μ T
 - Increased pressure and gradient, but current driven modes more stable
 - Higher gradients allowed farther from separatrix
- Density profile and particle transport change key first step
 - Underlying physics of particle transport change needs to be identified

Backup

Pre-discharge lithium evaporation varied during experiment first lithium usage in this particular run campaign

• Lithium evaporation before discharges with two overhead ovens

ELMs disappeared gradually during experiment

∭ NSTX-U **¥**^{OAK} **RIDGE**

IAEA FEC 2012 – Maingi EX/11-2

ELM elimination was not quite monotonic

∭NSTX-U ¥^{OAK} **RIDGE**

Transport barrier widens continuously with increasing predischarge lithium, i.e. pedestal-top D, χ_e reduced

Edge density, temperature, and pressure profiles fitted to "standard" modified hyperbolic functional form

n_e and P_e "mtanh" profile widths separate ELMy and ELM-free data

Density and pressure drop with lithium coatings at ψ_{N} =0.95, but increase at ψ_N =0.80 with increasing lithium

🔘 NSTX-U

3D external fields used to trigger ELMs, while "Snowflake Divertor" used to reduce edge impurity source

Edge stability limits pushed beyond global stability limits with lithium coatings in NSTX

T_e, T_i increased and edge n_e decreased with lithium coatings

Type I ELMs eliminated, energy confinement improved with lithium wall coatings; (ELMs eliminated up to β_N limit)

Edge χ_e goes down and χ_i goes up; core χ' s unchanged

- Global increase in τ_E correlates with drop in edge χ_e
- Consistent with change in χ_e , D from SOLPS simulations

D_{α} decreases and lower divertor Li-I increases with increasing lithium evaporation

Pre-lithium discharge near the kink/peeling boundary (end points of lithium scan)

Edge recycling, neutral pressure, and pressure peaking decrease, while confinement and edge stability increase with increasing pre-discharge lithium in NSTX

T_e and P_e profile peaking factors decrease with increasing lithium

- n_e profile peaking factor first increases as ELM v goes down, and then decreases as ELMs disappear and profile becomes hollow
- T_e and P_e profile peaking factors decrease ~ continuously, good for MHD stability

LiTER deposition has toroidal and poloidal variation

- 30cm distance from LiTER to surface
- in NSTX, x-axis should be multiplied by 10x
- For R_{OSP}~0.8m, deposition 1/3 less than max.

Divertor recycling and far edge cross-field transport quantified with data-constrained SOLPS modeling

IAEA FEC 2012 – Maingi EX/11-2

- SOLPS (B2-EIRENE: 2D fluid • plasma + MC neutrals) used to model NSTX experimental data
 - **Iterative Method** •
 - ✓ Neutrals, impurities contributions
 - ✓ Recycling changes due to lithium

Parameters adjusted to fit data	Measurements used to constrain code
Radial transport coefficients D_{\perp} , χ_e , χ_i	Midplane n _e , T _e , T _i profiles
Divertor recycling coefficient	Calibrated D_{α} camera
Separatrix position/ T _e ^{sep}	Peak divertor heat flux

2-D modeling used to model power and particle balance of baseline ELMy discharge

∭ NSTX-U **¥**^{OAK} **RIDGE**

IAEA FEC 2012 – Maingi EX/11-2

With-lithium discharge profiles not reproduced with simple recycling coefficient change

With-lithium discharge profiles better matched with transport and recycling coefficient change

NSTX-U **CAK**

IAEA FEC 2012 – Maingi EX/11-2

Peak D_a brightness is matched to experiment to constrain PFC recycling coefficient: lithium reduces R from ~.98 to ~.9

- For each discharge modeled, PFC recycling coefficient R is ulletscanned
 - Fits to midplane data are redone at each R to maintain match to experiment
- D_{α} emissivity from code is integrated along lines of sight of ulletcamera, compared to measured values
 - Best fit indicates reduction of recycling from R~0.98 to R~0.9 when lithium coatings are applied

Carbon is the dominant impurity species with lithium coatings

- Measured lithium concentration is much less than carbon
 - Carbon concentration ~100 times higher
 - Carbon increases when lithium coatings are applied
 - Neoclassical effect: higher
 Z accumulates, low Z
 screened out
- Increase in n_c may be due to lack of ELMs
 - Can be mitigated by triggering ELMs

Power and particle exhaust a key challenge for future devices

- ITER is designed to operate in a "partially detached divertor" state, at the limits of heat removal capability for solid PFCs
 - "Attached divertor" states usually have 100% higher peak heat flux
 - There are challenges for tungsten in this environment
- DEMO designs have ~ 5x higher power density: if high core radiation unachievable, that heat exhaust problem may be impossible with solid surfaces
 - Liquid metals are an option, but need significant R &D
- NSTX used lithium wall coatings (evaporative and liquid) to test the efficacy of lithium in particle and power exhaust
 - Lithium has effective deuterium retention -> low recycling
 - Lithium will be important research line in NSTX-Upgrade, which comes online in 2014

Increased density gradient with lithium reduces micro-tearing drive; (ETG important in far edge in clamping T_e gradient)

Measured pedestal modifications are consistent with paleoclassical transport

- Pedestal structure model based partly on paleoclassical transport proposed
 - J.D. Callen, UW-CPTC 10-9
 - Depends on resistivity profile->Z_{eff} changes important
- Model recovers χ_e magnitude, shape, rise near separatrix, as well as modest increase with lithium outside $\psi_N \sim 0.95$
- Density profile shape changes with lithium also captured by model •

Edge fluctuations reduced with lithium coatings

J. Canik PoP 2011

IAEA FEC 2012 – Maingi EX/11-2

Edge reflectometry near pedestal top shows reduced density fluctuations with lithium

- Reduced transport in inner region->higher pedestal top pressure
- Reflectometer shows reduced fluctuation • level
 - Pre-lithium: strong amplitude and phase fluck
 - Post-lithium: little amplitude fluctuation _

Pre-Li

Cutoff

radius

n_e

1.30 1.35 1.40 1.45 1.50

R (m)

129021

0.4817

 3D simulations using Kirchoff integral indicate turbulence level reduced from ~10% to $\sim 1\%$ with lithium

- (keV), n_e (10²⁰ m⁻³)

0.8

0.6

0.4

0.2

0.0

ne

129038

0.4817

0.8

0.6

0.4

0.2

0.0

T_a (keV), n_a (10²⁰ m⁻³)

IAEA FEC 2012 - Maingi EX/11-2

R (m)

With-Li

High-k scattering diagnostic shows little change in fluctuation amplitude at $k\rho_s > 10$

0.8

0.6

Scattering

locations

- Pre-to-post lithium transition repeated, similar profile changes observed
- Fluctuations similar for $k\rho_s > 10$, some • reduction at lower k for the with-lithium case

With power reduced so T_e profile matches pre-lithium case, fluctuation amplitudes show broad reduction

BES also shows reduced turbulence levels in post-lithium discharges

*Courtesy D.R. Smith, UW

