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Fusion applications of low-A spherical tokamak (ST) 

• Develop plasma-material-interface (PMI) solutions for next-steps 

– Exploit high divertor heat flux from lower-A/smaller major radius 

• Fusion Nuclear Science/Component Test Facility (FNSF/CTF) 

– Exploit high neutron wall loading for material and component development 

– Utilize modular configuration of ST for improved accessibility, maintenance 

• Extend toroidal confinement physics predictive capability 

– Access strong shaping, high b, vfast / vAlfvén, and rotation, to test physics 

models for ITER and next-steps (see NSTX, MAST, other ST presentations) 

• Long-term: reduced-mass/waste low-A superconducting Demo 

This talk: 

• Planned capabilities and construction progress of NSTX Upgrade 

• Mission and configuration studies for ST-based FNSF/CTF 
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NSTX Upgrade will access next factor of two  

increase in performance to bridge gaps to next-step STs 

• Confinement scaling (electron transport) 
• Non-inductive ramp-up and sustainment 
• Divertor solutions for mitigating high heat flux 
• Radiation-tolerant magnets (for Cu TF STs) 

 

* Includes 4MW of high-harmonic fast-wave (HHFW) heating power 

VECTOR (A=2.3) 

JUST (A=1.8) 

ARIES-ST (A=1.6) 

Low-A  
Power Plants 

 

 

Key issues to resolve 

for next-step STs 

Parameter NSTX 
NSTX 

Upgrade 
Fusion Nuclear 
Science Facility 

Pilot Plant 

Major Radius R0 [m] 0.86 0.94 1.3 1.6 – 2.2 

Aspect Ratio R0 / a  1.3  1.5  1.5  1.7 

Plasma Current [MA] 1 2 4 – 10 11 – 18 

Toroidal Field [T] 0.5 1 2 – 3 2.4 – 3 

Auxiliary Power [MW] ≤ 8 ≤ 19* 22 – 45 50 – 85 

P/R [MW/m] 10 20 30 – 60 70 – 90 

P/S [MW/m2] 0.2 0.4 0.6 – 1.2 0.7 – 0.9 

Fusion Gain Q 1 – 2 2 – 10 
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NSTX Upgrade will address critical plasma confinement and 

sustainment questions by exploiting 2 new capabilities 

TF OD = 40cm 
 

Previous  

center-stack 

TF OD = 20cm  

 

RTAN [cm] __________________  

 50,  60, 70, 130 
 60,  70,120,130 
70,110,120,130 

n 
e 

/  n 
Greenwald 

0.95 
0.72 

IP=0.95MA,  H98y2=1.2, bN=5, bT = 10% 

BT = 1T, PNBI = 10MW, PRF = 4MW 

 2x higher CD efficiency from 

larger tangency radius RTAN 

 

 100% non-inductive CD with  

q(r) profile controllable by: 

tangency radius, density, position 

 New 2nd NBI Present NBI 

Normalized e-collisionality ne*  ne / Te
2 

ITER-like 

scaling 

ST-FNSF  

 

? 

 constant 
q, b, r* 

NSTX 

Upgrade 
 2x higher BT and IP increases T, 

reduces n* toward ST-FNSF to 

better understand confinement 

 

 Provides 5x longer pulses for 

profile equilibration, NBI ramp-up 

New 
center-stack 
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Non-inductive ramp-up from ~0.4MA to ~1MA projected to be 

possible with new centerstack (CS) + more tangential 2nd NBI 

• New CS provides higher TF (improves stability), 3-5s needed for J(r) equilibration 

• More tangential injection provides 3-4x higher CD at low IP: 

– 2x higher absorption (4080%) at low IP = 0.4MA 

– 1.5-2x higher current drive efficiency 

 

Present NBI 
More tangential 

2nd NBI 

  

TSC simulation of non-inductive ramp-up 

from IP = 0.1MA, Te=0.5keV target at BT=1T 
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100% non-inductive operating points projected for a  

range of toroidal fields, densities, and confinement levels 

• From GTS (ITG) and GTC-Neo 

(neoclassical):  

–  ci,ITG/ci,Neo ~ 10-2 

– Assumption of neoclassical ion 

thermal transport should be valid 

BT [T] Pinj [MW] IP [MA] 

0.75 6.8 0.6-0.8 

0.75 8.4 0.7-0.85 

1.0 10.2 0.8-1.2 

1.0 12.6 0.9-1.3 

1.0 15.6 1.0-1.5 

Projected Non-Inductive Current 

Levels for k~2.85, A~1.75, fGW=0.7 

BT = 1.0 T, IP = 1MA, Pinj = 12.6MW 
Contours of Non-Inductive Fraction 

Contours of qmin 
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NSTX-U will investigate detachment and high-flux-expansion 

“snowflake” divertor for heat flux mitigation 

• Divertor heat flux width decreases with 

increased plasma current IP 

 

 

• Can reduce heat flux by 2-4× in NSTX via 

partial detachment at sufficiently high frad  

 

 30-45MW/m2 in NSTX-U with conventional 

LSN divertor at full current and power 

 

 

 

λq
mid ~ Ip

-1 to -1.6 

NSTX-U:  U/D balanced snowflake has < 10MW/m2 at IP = 2MA, PAUX=10-15MW 

NSTX data 
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 Snowflake Divertor  Standard Divertor 

 
• Snowflake high flux expansion = 40-60 

lowers incident q, promotes detachment 

 

Soukhanovskii EX/P5-21 
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Major engineering challenge of NSTX Upgrade: 
Field and current each increase 2×  E-M forces increase 4× 

Upper TF/ OH Ends 

4. OH leads placed at bottom, made 
coaxial to minimize forces, error-fields 

2. Improved TF joint design 
• Joint radius increased  lower B 

• Flex-jumper improved 

3. Reinforcements: 

• Umbrella structure 

• PF, TF coil supports 

1. Simplified inner TF design 
• Single layer of TF conductors 
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Design solutions for increased loads: 
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Substantial R&D completed to achieve  

higher toroidal field with new center-stack 

Friction-stir welded joint 

CuCrZr Cu 
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Wire EDM used instead of laminated build 
Flexible TF strap 
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TF cooling tube soldering & flux removal process improved,  

 1st quadrant of TF bundle to be completed November 2012 
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Close up view of solder 

joint on test conductor 

Bar post-soldering 

and ground smooth 

Bar placed on heat 

plate, cooling tube 

inserted into grove 

Vacuum-pressure impregnation 
(VPI) using special cyanate-ester 
epoxy blend (CTD-425) required 
for shear strength will be used for 
the inner TF assembly 

Recent successful VPI trials 

Quadrant mold for VPI nearly ready 
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Significant progress made during past year 

to prepare NSTX-U test-cell and 2nd NBI 

Oct. 2011: Start of construction 

Sept. 2011: NBI space cleared 

Oct. 2012:  2nd NBI box moved to test cell 

Upper diagnostic platform installed 

 

 

11 



24th IAEA FEC - Progress on ST Development (J. Menard) 

Successful operation of NSTX-U (and MAST-U) would 

provide basis for design and operation of next-step ST  

• Present next-step focus is on Fusion Nuclear Science Facility 

– Mission: provide continuous fusion neutron source to develop knowledge-

base for materials and components, tritium fuel cycle, power extraction 

12 

• FNSF  CTF would complement ITER path to DEMO 

 

• Studying wide range of ST-FNSF configurations to identify 
advantageous features, incorporate into improved ST design 

• Investigating performance vs. device size since fusion power, 
gain, tritium consumption and breeding, … depend on size 

M. Peng et al., IEEE/NPSS Paper S04A-2 - 24th SOFE Conf. (2011) 
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Increased device size provides modest increase in stability, 

but significantly increases tritium consumption 

• Scan R = 1m  2.2m (smallest FNSF  pilot plant with Qeng ~ 1) 

• Fixed average neutron wall loading = 1MW/m2 

• BT = 3T, A=1.7, k=3, H98 = 1.2, fGreenwald = 0.8 

• 100% non-inductive: fBS = 75-85% + NNBI-CD (ENBI=0.5MeV JT60-SA design) 
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• Larger R lowers bT & bN, increases q* 
 

• Comparable/higher bT and bN 

values already sustained in NSTX 
 

• Q = 1  3, Pfusion = 60MW  300MW 
 5× increase in T consumption 
 

• 2-3× higher wall loading for CTF/Pilot 
Plant if bN  6, H98  1.5 (not shown) 
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FNSF center-stack can build upon NSTX-U design  

and incorporate NSTX stability results 

•Like NSTX-U, use TF wedge segments (but brazed/pressed-fit together) 

– Coolant paths: gun-drilled holes or NSTX-U-like grooves in wedge + welded tube 

•Bitter-plate divertor PF magnets in ends of TF enable high triangularity 

– NSTX data:  High d > 0.55 and shaping S  q95IP/aBT > 25 minimizes disruptivity 

– Neutronics:  MgO insulation can withstand lifetime (6 FPY) radiation dose 
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Divertor PF coil configurations identified to achieve  

high d while maintaining peak divertor heat flux < 10MW/m2  
 

 

• Flux expansion = 15-25, dx ~ 0.55 

• 1/sin(qplate) = 2-3 

• Detachment, pumping questionable 
– Future: assess long-leg, V-shape divertor (JA) 
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• Flux expansion = 40-60, dx ~ 0.62 

• 1/sin(qplate) = 1-1.5 

• Good detachment (NSTX data) and 
cryo-pumping (NSTX-U modeling) 

Snowflake Conventional 

Field-line angle  
of incidence at  
strike-point = 1˚ 

 Jaworski EX/P5-31 

• Will also test liquid metal PFCs in NSTX-U for power-handling, surface replenishment 
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Cost of tritium and need to demonstrate T self-sufficiency 

motivate analysis of tritium breeding ratio (TBR) 

• Example costs of T w/o breeding at $0.1B/kg for R=1  1.6m 
– FNS mission: 1MWy/m2   $0.33B  $0.9B 

– Component testing: 6MWy/m2  $2B  $5.4B 

• Implications: 
– TBR << 1 likely affordable for FNS mission with R ~ 1m 

– Component testing arguably requires TBR approaching 1 for all R 
 

• Initial analysis:  R=1.6m ST-FNSF can achieve TBR ~ 1 

 

• Future work: assess smaller R, 3D effects (inter-blanket gaps, test-blankets) 

Extended 
conformal blanket 

TBR = 1.1 TBR = 1.07 

Stabilizing 

shell  

+ 3cm thick 
stabilizing shell 

 

TBR = 0.97 
10 NBI penetrations 

NBI penetration at midplane 

Shorter blanket for  
radial divertor access 

TBR = 1.016 
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Flexible and efficient in-vessel access important for testing,  

replacing, improving components, maximizing availability 

• Vertically remove entire blanket 
and/or center-stack 
– Better for full blanket replacement? 

 

 

• Translate blanket segments 
radially then vertically 
– Better for more frequent blanket 

module replacement and/or repair? 
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• May be possible to combine features of both approaches 

Several maintenance approaches under consideration: 

Radial ports  
for divertor  
maintenance 
or pumping 
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Summary 

• NSTX Upgrade device and research aim to narrow  

performance and understanding gaps to next-steps 

 

• Upgrade Project has made good progress in 

overcoming key design challenges 
– Project on schedule and budget, ~45-50% complete 

– Aiming for project completion in summer 2014 

 

• ST-FNSF development studies are quantifying 

performance dependence on size 
– Building on achieved/projected NSTX/NSTX-U performance and design 

– Incorporating high d, advanced divertors, TBR ~ 1, good maintainability 
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