

Progress on developing the spherical tokamak for fusion applications

Lawrence Livermore National Laboratory

NSTX-U

Jonathan Menard¹

T. Brown¹, J. Canik², J. Chrzanowski¹, L. Dudek¹, L. El Guebaly³, S. Gerhardt¹, S. Kaye¹,
C. Kessel¹, E. Kolemen¹, M. Kotschenreuther⁴, R. Maingi², C. Neumeyer¹,
M. Ono¹, R. Raman⁵, S. Sabbagh⁶, V. Soukhanovskii⁷, T. Stevenson¹,
R. Strykowsky¹, P. Titus¹, P. Valanju⁴, G. Voss⁸, A. Zolfaghari¹,
and the NSTX Upgrade Team

¹Princeton Plasma Physics Laboratory, Princeton, NJ 08543 ²Oak Ridge National Laboratory, Oak Ridge, TN, USA ³University of Wisconsin, Madison, WI, USA ⁴University of Texas, Austin, TX, USA ⁵University of Washington, Seattle, WA, USA ⁶Columbia University, New York, NY, USA ⁷Lawrence Livermore National Laboratory, Livermore, CA, USA ⁸Culham Centre for Fusion Energy, Abingdon, Oxfordshire, UK

24th IAEA Fusion Energy Conference San Diego, USA 8-13 October 2012

This work supported by the US DOE Contract No. DE-AC02-09CH11466

Fusion applications of low-A spherical tokamak (ST)

- Develop plasma-material-interface (PMI) solutions for next-steps
 - Exploit high divertor heat flux from lower-A/smaller major radius
- Fusion Nuclear Science/Component Test Facility (FNSF/CTF)
 - Exploit high neutron wall loading for material and component development
 - Utilize modular configuration of ST for improved accessibility, maintenance
- Extend toroidal confinement physics predictive capability
 - Access strong shaping, high β , v_{fast} / $v_{Alfvén}$, and rotation, to test physics models for ITER and next-steps (see NSTX, MAST, other ST presentations)
- Long-term: reduced-mass/waste low-A superconducting Demo

This talk:

- Planned capabilities and construction progress of NSTX Upgrade
- Mission and configuration studies for ST-based FNSF/CTF

NSTX Upgrade will access next factor of two increase in performance to bridge gaps to next-step STs

Low-A Power Plants

Parameter	NSTX	NSTX Upgrade	Fusion Nuclear Science Facility	Pilot Plant
Major Radius R_0 [m]	0.86	0.94	1.3	1.6 – 2.2
Aspect Ratio R_0/a	≥ 1.3	≥ 1.5	≥ 1.5	≥ 1.7
Plasma Current [MA]	1	2	4 – 10	11 – 18
Toroidal Field [T]	0.5	1	2 – 3	2.4 – 3
Auxiliary Power [MW]	≤ 8	≤ 19 *	22 – 45	50 – 85
P/R [MW/m]	10	20	30 - 60	70 – 90
P/S [MW/m ²]	0.2	0.4	0.6 – 1.2	0.7 – 0.9
Fusion Gain Q			1 – 2	2 – 10

VECTOR (A=2.3)

* Includes 4MW of high-harmonic fast-wave (HHFW) heating power

Key issues to resolve for next-step STs

- Confinement scaling (electron transport)
- Non-inductive ramp-up and sustainment
- Divertor solutions for mitigating high heat flux
- Radiation-tolerant magnets (for Cu TF STs)

NSTX Upgrade will address critical plasma confinement and sustainment questions by exploiting 2 new capabilities

🔘 NSTX-U

24th IAEA FEC - Progress on ST Development (J. Menard)

Non-inductive ramp-up from ~0.4MA to ~1MA projected to be possible with new centerstack (CS) + more tangential 2nd NBI

- New CS provides higher TF (improves stability), 3-5s needed for J(r) equilibration
- More tangential injection provides 3-4x higher CD at low I_P:
 - 2x higher absorption (40 \rightarrow 80%) at low I_P = 0.4MA
 - 1.5-2x higher current drive efficiency

100% non-inductive operating points projected for a range of toroidal fields, densities, and confinement levels

Projected Non-Inductive Current Levels for κ ~2.85, A~1.75, f_{GW}=0.7

B _T [T]	P _{inj} [MW]	I _P [MA]
0.75	6.8	0.6-0.8
0.75	8.4	0.7-0.85
1.0	10.2	0.8-1.2
1.0	12.6	0.9-1.3
1.0	15.6	1.0-1.5

- From GTS (ITG) and GTC-Neo (neoclassical):
 - $-\chi_{i,ITG}/\chi_{i,Neo} \sim 10^{-2}$
 - Assumption of neoclassical ion thermal transport should be valid

S. Gerhardt, et al., Nucl. Fusion 52 (2012) 083020

NSTX-U will investigate detachment and high-flux-expansion "snowflake" divertor for heat flux mitigation

NSTX data

- Divertor heat flux width decreases with increased plasma current I_P
 - → 30-45MW/m² in NSTX-U with conventional LSN divertor at full current and power
- Can reduce heat flux by $2-4 \times$ in NSTX via partial detachment at sufficiently high f_{rad}

lowers incident q_{\perp} , promotes detachment

NSTX-U: U/D balanced snowflake has < 10MW/m² at $I_P = 2MA$, $P_{AUX}=10-15MW$

Major engineering challenge of NSTX Upgrade: Field and current each increase $2x \rightarrow E-M$ forces increase 4x

Design solutions for increased loads:

- 1. Simplified inner TF design
 - Single layer of TF conductors

2. Improved TF joint design

- Joint radius increased → lower B
- Flex-jumper improved
 - 3. Reinforcements:
 - Umbrella structure
 - PF, TF coil supports

Upper TF/ OH Ends

4. OH leads placed at bottom, made coaxial to minimize forces, error-fields

Substantial R&D completed to achieve higher toroidal field with new center-stack

TF cooling tube soldering & flux removal process improved, 1st quadrant of TF bundle to be completed November 2012

Vacuum-pressure impregnation (VPI) using special cyanate-ester epoxy blend (CTD-425) required for shear strength will be used for the inner TF assembly

Recent successful VPI trials

Quadrant mold for VPI nearly ready

Significant progress made during past year to prepare NSTX-U test-cell and 2nd NBI

Oct. 2011: Start of construction

Sept. 2011: NBI space cleared Upper diagnostic platform installed

Oct. 2012: 2nd NBI box moved to test cell

Successful operation of NSTX-U (and MAST-U) would provide basis for design and operation of next-step ST

- Present next-step focus is on Fusion Nuclear Science Facility
 - Mission: provide continuous fusion neutron source to develop knowledgebase for materials and components, tritium fuel cycle, power extraction
- FNSF → CTF would complement ITER path to DEMO

- Studying wide range of ST-FNSF configurations to identify advantageous features, incorporate into improved ST design
- Investigating performance vs. device size since fusion power, gain, tritium consumption and breeding, ... depend on size

Increased device size provides modest increase in stability, but significantly increases tritium consumption

- Scan R = 1m \rightarrow 2.2m (smallest FNSF \rightarrow pilot plant with Q_{eng} ~ 1)
- Fixed average neutron wall loading = 1MW/m²
- $B_T = 3T$, A=1.7, κ =3, H₉₈ = 1.2, f_{Greenwald} = 0.8
- 100% non-inductive: $f_{BS} = 75-85\% + NNBI-CD (E_{NBI}=0.5MeV JT60-SA design)$

FNSF center-stack can build upon NSTX-U design and incorporate NSTX stability results

Like NSTX-U, use TF wedge segments (but brazed/pressed-fit together)

- Coolant paths: gun-drilled holes or NSTX-U-like grooves in wedge + welded tube

•Bitter-plate divertor PF magnets in ends of TF enable high triangularity

– **NSTX data:** High δ > 0.55 and shaping S = q₉₅I_P/aB_T > 25 minimizes disruptivity

-Neutronics: MgO insulation can withstand lifetime (6 FPY) radiation dose

Divertor PF coil configurations identified to achieve high δ while maintaining peak divertor heat flux < 10MW/m²

- $1/sin(\theta_{plate}) = 2-3$
- Detachment, pumping questionable
 - Future: assess long-leg, V-shape divertor (JA)
- 1/sin(θ_{plate}) = 1-1.5
 Good detachment (NSTX data) and cryo-pumping (NSTX-U modeling)
- Will also test liquid metal PFCs in NSTX-U for power-handling, surface replenishment

Cost of tritium and need to demonstrate T self-sufficiency motivate analysis of tritium breeding ratio (TBR)

• Example costs of T w/o breeding at \$0.1B/kg for R=1 \rightarrow 1.6m

\$0.33B → \$0.9B

- FNS mission: 1MWy/m²
- Component testing: $6MWy/m^2$ $$2B \rightarrow $5.4B$
- Implications:
 - TBR << 1 likely affordable for FNS mission with R ~ 1m
 - Component testing arguably requires TBR approaching 1 for all R
- Initial analysis: R=1.6m ST-FNSF can achieve TBR ~ 1

• Future work: assess smaller R, 3D effects (inter-blanket gaps, test-blankets)

Flexible and efficient in-vessel access important for testing, replacing, improving components, maximizing availability

Several maintenance approaches under consideration:

- Vertically remove entire blanket and/or center-stack
 - Better for full blanket replacement?

- Translate blanket segments radially then vertically
 - Better for more frequent blanket module replacement and/or repair?

May be possible to combine features of both approaches

- NSTX Upgrade device and research aim to narrow performance and understanding gaps to next-steps
- Upgrade Project has made good progress in overcoming key design challenges
 - Project on schedule and budget, ~45-50% complete
 - Aiming for project completion in summer 2014
- ST-FNSF development studies are quantifying performance dependence on size
 - Building on achieved/projected NSTX/NSTX-U performance and design
 - Incorporating high δ , advanced divertors, TBR ~ 1, good maintainability