

Benchmarking of Codes for Spatial with Account of Plasma

A.B. Kukushkin,

Potential importance of electron cyclotron (EC) wave emission in the local electron power balance in the steady-state regimes of ITER operation with high temperatures (see, e.g., [Albajar F., et al. // Nucl. Fusion, 2005]), and in DEMO reactor, suggested accurate calculations of the local net radiated power density, $P_{FC}(\rho)$. When central electron temperature increases to ~30 keV the local EC power loss can become a substantial part of heating from fusion alphas and is close to the total auxiliary heating [Kukushkin A.B., P.V. Minashin, A.R. Polevoi //Plasma Phys. Reports, 2012]

0.2	
- $-$ Fusion alphas to plasma	Local energy
	80
	halanaa

(a) Local $P_{EC}(0)/P_{\alpha}(0)$ and total $Q_{EC}/(Q_{aux}+Q_{fus}/5)$ fraction of EC loss, (b) Central electron temperature and normalized beta (c) Fusion power Q_{los} and loss to the SOL $Q_{los} = Q_{\alpha} + Q_{aux} - Q_{rad}$ from 1.5D simulations of scan of plasma confinement, H_{98v2} . (d) Temperature scan of central power balance from 1.5D simulations with T_i=T_e at low density, <n> ~ 6 10¹⁹ m⁻³ in ITER-like configuration

Verification of numerical codes for EC losses in the frame of self-Goal consistent simulations of 2D plasma equilibrium and 1D transport for tokamak-reactors ITER and DEMO

BENCHMARKING OF CODES FOR ECR LOSSES 2008

The first benchmarking of the codes for calculating the spatial profiles of EC power losses was carried out in [Albajar F., Bornatici M., Engelmann F., Kukushkin A.B. // Fusion Sci and Tech., 2009] with the codes SNECTR, CYTRAN, CYNEQ, EXACTEC.

Comparison of results for the following cases was made:

(A) Specular reflection of the EC waves from the wall of the vacuum vessel, a cylinder with circular cross-section (EXACTEC and SNECTR),

EXTENDING THE BENCHMARKING 2008

1. Addition of new code RAYTEC (2009) [Albajar F., et al. // Nucl. Fusion. 2009]

2. Inhomogeneous profile of the effective magnetic field, calculated with allowance for plasma equilibrium

> **Comparison for various dimensionality of magnetic field:** CYNEQ-B(0D), CYNEQ-B(1D), CYNEQ-B(2D) versions of the code

Comparison of CYNEQ with RAYTEC, CYTRAN, EXACTEC, for plasma profiles, obtained in the frame of self-consistent 1.5D transport simulations:

- (B) (1) Diffuse reflection in a circular cylinder (SNECTR),
 - (2) Diffuse reflection in any geometry or any reflection in a noncircular toroid (CYTRAN and CYNEQ)
- •The benchmarking [Albajar F., Bornatici M., Engelmann F., Kukushkin A.B. // Fusion Sci and Tech., 2009] has shown good agreement of results within the cases A and B.
- •The results have confirmed the expectation that for large enough reflectivity of the vacuum vessel wall, R_w (>~0.5), the cases A and **B** provide, respectively, the lower and upper bounds for spatial profile of EC power losses, $P_{FC}(\rho)$.

Benchmarking 2008 was made in a wide range of temperature and density profiles expected in reactor-grade tokamaks, but for a homogeneous magnetic field, $B(\rho) = const = \langle B \rangle_v$

Strong wall reflection, R_w=0.98

(1D transport + 2D equilibrium)

SNECTR	CYTRAN	CYNEQ	EXACTEC	RAYTEC	
Author, year					
	Tamor S., 1981 [S. Tamor, Report SAI- 023-81-189LJ/LAPS-72 (1981)]	Kukushkin A.B.	Albajar F., Bornatici M., Engelmann F.		
Tamor S., 1976 [S. Tamor, Nuclear Technology/Fusion 3, 293 (1983)]		1992, 2004 [A.B. Kukushkin, IAEA 1992, K.V. Cherepanov, A.B. Kukushkin, IAEA FEC 2004] + Minashin P.V, 2009 [A.B. Kukushkin, P.V. Minashin, EPS 2009]	2002	2009	
			[F. Albajar, M. Bornatici, F. Engelmann, Nuclear Fusion 42, 670-8 (2002)]	[F. Albajar, M. Bornatici and F. Engelmann, Nuclear Fusion 49, 115017 (2009)]	
Geometry, reflectivity					
Arbitrary	Hot plasma <t<sub>e>_V ≥ 10 keV, noncircular cross-section and moderate aspect ratio, A~3,</t<sub>		Cylindrical	Toroidal plasma	
Arbitrary			plasma, circular	with noncircular	
magnoto_nlasma			cross-section,		
magneto-piasma	multiple re	flection (1-R _w)<<1	A>>1	CI055-5ECU011	
Solution of radiative transfer problem					
Monte-Carlo simulation of emission and absorption of EC- waves	Assumed angle most of er frequencies optically thin	e isotropy of intensity, nergy is carried at for which plasma is (nonlocal transport)	Analytical solution of transfer equation	Numerical integration along EC ray paths	
	$P_{EC}(ρ→0)→∞$	Neglect of diffusive			
	(Corrected at	transport in the			
	URINL)	the core			
Electron velocity distribution function (VDF)					
Maxwellian		Non-maxw.,	Maxwellian	Maxwellian	
		anisotropic pitch-		[F. Albajar et al., Nuclear Fusion	
		angle		(2009)] , NON-MAXW. [F. Albajar et al., Proc. 16th Joint Workshop "ECE and ECRH" (2010)]	
Calculation of absorption and emission					
Numerical	Approx.	Numerical	Approximate formulas		
calculation	formulas	calculation			
Magnetic field inhomogeneity					
2D field without	2D magnetic field		2D magnetic field, without plasma		
plasma	B(o)=const	with plasma	equilibrium effects (Shafranov shift,		
equilibrium		equilibrium	etc.)		
Incorporation to self-consistent transport simulations					
Νο	Yes, in ASTRA	Yes, in ASTRA	Yes, in CRONOS		
	[F. Albajar et al., Nuclear Fusion 45, 642-8 (2005)]	[A.B. Kukushkin, P.V. Minashin, A.R. Polevoi, Plasma Physics Reports 38, 211-20 (2012)]	[J. Garcia et al., Nuclear Fusion 48, 075007 (2008)]	Νο	

Profiles of Electron Cyclotron Losses Equilibrium in Tokamak Reactors

P.V. Minashin

24th IAEA Fusion Energy Conference

CONCLUSIONS

The EC power loss density $P_{FC}(\rho)$ predicted by CYNEQ has been benchmarked versus predictions of other modern codes (RAYTEC, EXACTEC, and CYTRAN) for the same plasma parameters and different approximations of magnetic field inhomogeneity. •For the parameters expected in the ITER steady state scenario, the difference between the profiles of the local EC power loss, $P_{FC}(\rho)$, calculated by CYNEQ in 1D and 2D approximations of magnetic field appears to be less than a few percent in central plasma.

•The RAYTEC code takes into account the 2D inhomogeneity of the magnetic field and uses an EC transport model that differs from the model employed in the CYNEQ code and does not take into account the Shafranov shift Δ . For high elongations of $k_{elong} = 1.7-2.0$ and moderate aspect ratios of $A \sim 3$, expected for ITER and DEMO, both the maximum value of the local power loss density $P_{EC}(\rho)$ in the central region of the plasma column and the volume integrated power losses coincide to within 15% with CYNEQ predictions

- Modified EXACTEC code still underestimates $P_{FC}(\rho)$ profile near the center of the plasma column with a noncircular cross section. For the DEMO steady state scenario, the difference between EXACTEC and CYNEQ-B(0D) ~ 40% in the central region, while for CYNEQ-B(1D), the difference decreases to ~20%
- Benchmarking versus the CYTRAN code was carried out for the plasma parameters expected in the ITER steady state, obtained from self-consistent 1.5D transport simulations. For a small Shafranov shift agreement between the CYNEQ-B(1D) and CYTRAN predictions is within 10%, whereas for a large Shafranov shift, the difference between them increases to ~30%

CYNEQ-B(1D) code is the most appropriate code for self-consistent 1.5D transport simulations of plasma evolution in tokamak-reactors, because it provides high accuracy and an increased computational speed.

Acknowledgements. The authors are grateful to A.R. Polevoi (ITER Organization) for fruitful collaboration; A.Yu. Dnestrovskij (NRC "Kurchatov Institute"), for helpful discussions of the ASTRA code; F. Albajar (Fusion for Energy, Barcelona), for helpful comments on the results from the RAYTEC code. This work is supported by the RF State Corporation ROSATOM and the Council of the Russian Federation Presidential Grants for State Support of Leading Scientific Schools (grant no. NSh_65382.2010.2). Participation of P.V. Minashin in the 24th IAEA Fusion Energy Conference is partly supported by the travel grant from the IAEA.