24th IAEA Fusion Energy Conference, San Diego, 8th – 12th October 2012

Long-Term Impact of the Fukushima on the Prospect of the Fusion Power in Korea: TIMES Model Approaches for the Electricity Sector

H. CHANG, W. CHOI, H. THO, D. KANG, and Y. PARK*

National Fusion Research Institute, Daejeon, Korea *Ajou University, Suwon, Korea

Contents

- Motivations
- Reference Energy System
- Assumptions
- Results
- Concluding Remarks

Motivations

✓ The fuel mix of each countries depend on their circumstance.

Motivations

<Ratio of generation capacity>

<Share of electricity generation>

✓ What will happen in 2040 and beyond?

24th IAEA Fusion Energy Conference, San Diego, 8th – 12th October 2012

Motivations

✓ Though it was not cleared, public of Japan wants to move 0 nuclear.

- No new nuclear reactors are built beyond those already construction in OECD countries.
- ✤ 50% of planned nuclear power capacity are added in non-OECD countries.
- ✤ No life time extensions of nuclear power plant.

- What will happen under some assumptions in Korea in the long-term?
 - fuel mix, capacity addition and other indicators
- Can the fusion be a competitive option?

Reference Energy System

✓ RES of the TIMES(The Integrated MARKAL-EFOM System) model

24th IAEA Fusion Energy Conference, San Diego, 8th – 12th October 2012

Assumptions

- ✓ Reference scenario
 - Carbon constraints are set to reduce emission by 3% in 2012, 13.4% in 2020, and 50% in 2050 compared to the emission level in 2000.
- ✓ No nuke scenario
 - No new reactors are built beyond those already under construction and government confirmed plants.
- ✓ Carbon constraints are assumed to mitigate from 50% to 20% or from 50% to 35%, by 2050, with two scenarios.
- ✓ Emerging power technologies, such as CCS, IGCC, and fusion, are competed with conventional technologies.
 - The installation capacity of CCS is limited to 10% of installed fossil power plants due to the availability of carbon storage.

Results – Generation of electricity

✓ In 'base' case;

✤ Market penetration of fusion is not allowed.

- ✓ In 'no nuke' case;
 - ✤ Share of fusion is more than 20% in 2040.
 - Share of LNG is substantial in 2030.

Results – Generation under CO₂ constraints

- ✓ Sensitivity analysis of CO_2 constraints
 - Carbon constraints is critical factor to ensure fusion penetration.

Concluding Remarks

- ✓ The MARKAL-TIMES model results show that a significant share of fusion power will penetrate into the electricity energy systems.
 - \clubsuit No more nuke scenario + Higher CO₂ mitigation scenario
- ✓ In no more nuke scenario;
 - Share of gas power can be substantial without alternative baseload like fusion.
 - And if cheap gas (such as shale gas) enter into the Korean market, share of gas power will dramatically rise.

Thank you for your attention!!

1020

nge/Rent *

*

*

*

Hansoo CHANG jjang@nfri.kr

Receipts