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Motivation and Goal of Research

• Economically competitive tokamak reactor may be realized at 
low aspect ratio by eliminating the central solenoid (CS)

S. Nishio, et al., in Proc. 20th IAEA Fusion Energy Conf., FT/P7-35 (Vilamoura , 2004). 
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S. Shiraiwa, et al., Phys. Rev. Lett. 92 (2004) 035001. 

• Formation of Advanced Tokamak Plasma without CS was Achieved 
on JT-60U

• Is Ip ramp-up by LHW possible in ST?  → Demonstrate on TST-2



LHCD Experiment on TST-2

• LHCD experiments have started on TST-2.  
– The scenario is to ramp-up Ip from a very low current (~ 1 kA), very 

low density (< 1018 m-3) ST plasma. 
– Up to 400 kW of power at 200 MHz is available. 8.2 GHz ECH (20 

kW) installed to enable high Bt (0.3 T) operation required for LHCD.
– Experiments using a combline antenna (FW launch) was completed,  

and initial experiments using a dielectric-loaded waveguide array 
(“grill”) antenna (SW launch) have begun.

• Experimental results presented in this poster:  
– Efficiency of Ip ramp-up (FW launch vs. SW launch).
– X-ray measurements.
– Polarization-resolved wave measurements by RF magnetic probes.  

• Improved antenna for direct SW excitation is being tested.
– Capacitively coupled traveling wave antenna.
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TST-2 Spherical Tokamak and 
Combline Traveling Wave Antenna

Combline antenna
(11 elements)

inout

• excites traveling FW
• Ip driven by SW (LHW) 

(requires mode conversion)

• R = 0.38 m, a = 0.25 m (A = 1.5)
• Bt = 0.3 T, Ip = 0.14 MA



Ip Ramp-up to 15 kA Achieved by 200 MHz RF Power
(Combline Antenna)



Hard X-ray Spectra for Co/Ctr Current Drive Directions
(Combline Antenna)

• Photon flux is an order of magnitude higher in the co direction.
• Photon temperature is higher in the co direction (60 keV vs. 40 keV).
• Consistent with acceleration of electrons by a uni-directional RF wave.
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Frequency Spectra Measured by RF Magnetic Probes
(Combline Antenna)

• LHW excited by PDI?
– Pump wave (f = 200 MHz ± 1 kHz) has FW polarization (|Bt| > |Bp|). 
– PDI sidebands have SW (LHW) polarization (|Bt| < |Bp|).

• Pump wave weakens when sidebands intensify.
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Dielectric-Loaded Waveguide Array Antenna
(Grill Antenna)

• excites traveling SW (LHW)



Comparison of Driven Ip
(Combline Antenna vs. Grill Antenna)

• For similar Bv and PRF, driven Ip is slightly lower for grill antenna.
– Due to lower directivity of the waves excited by the grill antenna?



RF Magnetic Probe Array for k Measurement
(Grill Antenna)

• Array can be rotated about its axis 
– to distinguish RF magnetic field polarization

• ��� (toroidal) and	��� (poloidal) 

– to measure wavevector components 
• kt (toroidal) and kp (poloidal)

��� (θ = 0°) 
��� (θ = 90°) 



Measurement of kt and kp
(Grill Antenna)

SW (LHW) 
polarization
��� (θ = 0°)
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• Wavevector components are derived from phase differences of 
probes a, b, c, d relative to probe e.  



Radial Profiles of Pump Wave kt and kp
(Grill Antenna)
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• Dominant wavevector components excited by the grill antenna (for 
90°phasing) are kt ≅ 50 m-1 and kp ≅ 10 m-1.
– Measured kt ≲ 10 m-1 is much smaller (higher kt absorbed?)



Measurement of kR
(Grill Antenna)

• Radial component of wavevector can be derived from radial profile 
of phase measured by probes relative to the injected wave.  

~ 35 m-1

~ 10 m-1



Typical Values of Wavevector Components
(Grill Antenna)

��� (SW component) ��� (FW component)

|kt| ≅ |k||| < 10 m-1 ~ 10 m-1

|kp| < 10 m-1 < 5 m-1

|kR| ~ 35 m-1 ~ 10 m-1

|k⊥| ~ 35 m-1 ~ 10 m-1

k|| = 10 m-1 corresponds to n|| = 2.4 



New Traveling Wave LHW Antenna

• Consists of 13 mutually coupled 
vertical bars arrayed in the toroidal
direction.

• Electric field polarized in the 
toroidal direction (SW polarization).

• Power is fed to the outermost 
element.  Successive elements are 
excited through mutual 
capacitance.  

• Antenna is undergoing low-power 
testing.

6-element array for 
low-power testing



Conclusions (1)

• ST plasma initiation and Ip ramp-up by waves in the LH 
frequency range were demonstrated on TST-2.
– Combline antenna (FW launch) and dielectric-loaded waveguide 

array (“grill”) antenna (SW launch) drive similar Ip.
– Slightly lower Ip for the grill antenna may be a result of lower 

directivity of the excited wave. 

• Combline antenna results:
– X-ray measurements indicate acceleration of electrons by a uni-

directional wave.
– Combline antenna excites the FW, but SW is excited by parametric 

decay.



Conclusions (2)

• Grill antenna results:
– Wavevector components for FW and SW were measured by an 

array of RF magnetic probes.
– Results are consistent with expectations based on dispersion 

relations for FW and SW.
– Lower observed kt (≅ k||) compared to kt excited by the antenna 

may indicate absorption of higher k|| components.

• A new type of traveling SW antenna (capacitively coupled 
array) is being tested at low power.
– Scheduled to be tested on TST-2 in early 2013.
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