

Non-inductive Plasma Initiation and Plasma Current Ramp-up on the TST-2 Spherical Tokamak

Y. Takase, A. Ejiri, H. Kakuda, T. Oosako, T. Shinya, T. Wakatsuki, O. Watanabe³,
T. Ambo, H. Furui, T. Hashimoto, J. Hiratsuka, H. Kasahara¹, K. Kato, R. Kumazawa¹,
C. Moeller², T. Mutoh¹, A. Nakanishi, Y. Nagashima³, K. Saito¹, T. Sakamoto, T. Seki¹,
M. Sonehara, R. Shino, H. Togashi, T. Yamaguchi

The University of Tokyo, Kashiwa 277-8561 Japan ¹⁾ National Institute for Fusion Science, Toki 509-5292 Japan ²⁾ General Atomics, San Diego, CA 92186 U.S.A. ³⁾ Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580 Japan

> 24th IAEA Fusion Energy Conference 8-13 October 2012 San Diego, CA, USA

Motivation and Goal of Research

• Economically competitive tokamak reactor may be realized at low aspect ratio by eliminating the central solenoid (CS)

S. Nishio, et al., in Proc. 20th IAEA Fusion Energy Conf., FT/P7-35 (Vilamoura , 2004).

 Formation of Advanced Tokamak Plasma without CS was Achieved on JT-60U

• Is I_p ramp-up by LHW possible in ST? \rightarrow Demonstrate on TST-2

LHCD Experiment on TST-2

- LHCD experiments have started on TST-2.
 - The scenario is to ramp-up *I*_p from a very low current (~ 1 kA), very low density (< 10¹⁸ m⁻³) ST plasma.
 - Up to 400 kW of power at 200 MHz is available. 8.2 GHz ECH (20 kW) installed to enable high B_t (0.3 T) operation required for LHCD.
 - Experiments using a combline antenna (FW launch) was completed, and initial experiments using a dielectric-loaded waveguide array ("grill") antenna (SW launch) have begun.
- Experimental results presented in this poster:
 - Efficiency of I_p ramp-up (FW launch vs. SW launch).
 - X-ray measurements.
 - Polarization-resolved wave measurements by RF magnetic probes.
- Improved antenna for direct SW excitation is being tested.
 - Capacitively coupled traveling wave antenna.

Cold Plasma Dispersion Relation

TST-2 Spherical Tokamak and Combline Traveling Wave Antenna

- *R* = 0.38 m, *a* = 0.25 m (*A* = 1.5)
- $B_{\rm t} = 0.3$ T, $I_{\rm p} = 0.14$ MA

Combline antenna (11 elements)

- excites traveling FW
- *I*_p driven by SW (LHW) (requires mode conversion)

*I*_p Ramp-up to 15 kA Achieved by 200 MHz RF Power (Combline Antenna)

Hard X-ray Spectra for Co/Ctr Current Drive Directions (Combline Antenna)

- Photon flux is an order of magnitude higher in the co direction.
- Photon temperature is higher in the co direction (60 keV vs. 40 keV).
- Consistent with acceleration of electrons by a uni-directional RF wave.

Frequency Spectra Measured by RF Magnetic Probes (Combline Antenna)

- LHW excited by PDI?
 - Pump wave (f = 200 MHz \pm 1 kHz) has FW polarization ($|B_t| > |B_p|$).
 - PDI sidebands have SW (LHW) polarization ($|B_t| < |B_p|$).
- Pump wave weakens when sidebands intensify.

Dielectric-Loaded Waveguide Array Antenna (Grill Antenna)

• excites traveling SW (LHW)

Comparison of Driven *I*_p (Combline Antenna vs. Grill Antenna)

- For similar B_v and P_{RF} , driven I_p is slightly lower for grill antenna.
 - Due to lower directivity of the waves excited by the grill antenna?

RF Magnetic Probe Array for *k* Measurement (Grill Antenna)

- Array can be rotated about its axis
 - to distinguish RF magnetic field polarization
 - \tilde{B}_{t} (toroidal) and \tilde{B}_{p} (poloidal)
 - to measure wavevector components
 - $k_{\rm t}$ (toroidal) and $k_{\rm p}$ (poloidal)

Measurement of k_t and k_p (Grill Antenna)

• Wavevector components are derived from phase differences of probes a, b, c, d relative to probe e.

Radial Profiles of Pump Wave k_t and k_p (Grill Antenna)

- Dominant wavevector components excited by the grill antenna (for 90° phasing) are $k_{\rm t} \cong 50 \, {\rm m}^{-1}$ and $k_{\rm p} \cong 10 \, {\rm m}^{-1}$.
 - Measured $k_t \leq 10 \text{ m}^{-1}$ is much smaller (higher k_t absorbed?)

Measurement of *k*_R (Grill Antenna)

• Radial component of wavevector can be derived from radial profile of phase measured by probes relative to the injected wave.

Typical Values of Wavevector Components (Grill Antenna)

	$ ilde{B}_{\mathrm{p}}$ (SW component)	\tilde{B}_{t} (FW component)
$ k_{t} \cong k_{ } $	< 10 m ⁻¹	~ 10 m ⁻¹
k _p	< 10 m ⁻¹	< 5 m ⁻¹
k _R	~ 35 m ⁻¹	~ 10 m ⁻¹
k_	~ 35 m ⁻¹	~ 10 m ⁻¹

$$k_{||} = 10 \text{ m}^{-1} \text{ corresponds to } n_{||} = 2.4$$

New Traveling Wave LHW Antenna

- Consists of 13 mutually coupled vertical bars arrayed in the toroidal direction.
- Electric field polarized in the toroidal direction (SW polarization).
- Power is fed to the outermost element. Successive elements are excited through mutual capacitance.
- Antenna is undergoing low-power testing.

6-element array for low-power testing

Conclusions (1)

- ST plasma initiation and *I*_p ramp-up by waves in the LH frequency range were demonstrated on TST-2.
 - Combline antenna (FW launch) and dielectric-loaded waveguide array ("grill") antenna (SW launch) drive similar I_p .
 - Slightly lower *I*_p for the grill antenna may be a result of lower directivity of the excited wave.
- Combline antenna results:
 - X-ray measurements indicate acceleration of electrons by a unidirectional wave.
 - Combline antenna excites the FW, but SW is excited by parametric decay.

Conclusions (2)

- Grill antenna results:
 - Wavevector components for FW and SW were measured by an array of RF magnetic probes.
 - Results are consistent with expectations based on dispersion relations for FW and SW.
 - Lower observed $k_t (\cong k_{||})$ compared to k_t excited by the antenna may indicate absorption of higher $k_{||}$ components.
- A new type of traveling SW antenna (capacitively coupled array) is being tested at low power.
 - Scheduled to be tested on TST-2 in early 2013.

Acknowledgments

- This work is supported by
 - Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (S) 21226021, (A) 21246137, (B) 23360409.
 - National Institute for Fusion Science Collaboration Research Program NIFS12KNWR001.
 - Japan-US Cooperation in Fusion Research and Development.
 - US DOE Contract No. DE-AD03-97ER-54411.