Since 18 of December 2019 conferences.iaea.org uses Nucleus credentials. Visit our help pages for information on how to Register and Sign-in using Nucleus.

8–13 Oct 2012
US/Pacific timezone

IFE/P6-01: Particle Simulation of Fusion Ignition

11 Oct 2012, 14:00
4h 45m
Poster Room (Area F-B)

Poster Room (Area F-B)

Poster IFE - Inertial Fusion Experiments and Theory Poster: P6

Speaker

Mr Richard M. MORE (USA)

Description

A new molecular dynamics (MD) particle simulation code has been developed to study inertial fusion ignition physics including effects of a non-Maxwellian ion velocity distribution. 10,000 DT ions at density 100 g/cc and temperatures of several keV are followed for 10 to 20 psec. The simulation includes ion-ion collisions, electron-ion coupling and emission and absorption of radiation. Fusion reactions produce energetic alphas which deposit energy to electrons and ions and the plasma self-heats to 20-30 keV. This simulation using realistic particles and interactions poses the scientific challenge of including quantum processes (fusion, radiation) in a classical particle simulation and the computational challenge of following the calculation for long enough to see significant plasma self-heating. The paper gives a detailed discussion of special physical and numerical techniques which make it possible to do such a simulation. The molecular dynamics is carefully compared to hydrodynamic simulations of small plasma volumes to test both codes. The most important new physics in MD simulations is the possibility to include a non-Maxwell ion velocity distribution f(v); fusion reaction rates are very sensitive to the high-energy tail of f(v), which depends delicately on plasma transport and equilibration processes. Although equilibrium ion-pair correlation is not strong in multi-keV plasmas we find substantial dynamical correlations caused by alpha-particle energy transfers. It is found that calculations starting from a variety of initial conditions evolve to follow a unique self-heating trajectory, an ignition attractor. Calculations starting with 3 keV DT heat to ignition within a few psec after a pulse of energetic ions are injected; this shows that fast ions are quite effective for fast ignition of pre-compressed DT. A series of such calculations are performed to determine the threshold ion deposition heating required to ignite DT fuel within the short time of peak target compression. This work was supported in part by Department of Energy under Contract DE-AC02-05CH11231 at the Lawrence Berkeley National Laboratory and under Contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory.

Country or International Organization of Primary Author

USA

Primary author

Co-authors

Dr Enrique Henestroza (Lawrence Berkeley National Laboratory) Dr Frank Graziani (Lawrence Livermore National Laboratory) Dr John Barnard (Lawrence Berkeley National Laboratory)

Presentation materials

There are no materials yet.