Globus-M Results Toward Compact Spherical Tokamak with enhanced Parameters Globus-M2

V.K. Gusev, N.N. Bakharev, A.A. Berezutskii, V.V. Bulanin, A.S. Bykov, S.E. Bender, F.V. Chernyshev, I.N. Chugunov, V.V. Dyachenko, A.D. Iblyaminova, M.A. Irzak, A.A. Kavin, G.S. Kurskiev, S.A. Khitrov, N.A. Khromov, V.A. Kornev, M.M. Larionov, K.M. Lobanov, A.D. Melnik, V.B. Minaev, A.B. Mineev, M.I. Mironov, I.V. Miroshnikov, A.N. Novokhatsky, A.D. Ovsyannikov, A.A. Panasenkov, M.I. Patrov, M.P. Petrov, Yu.V. Petrov, V.A. Rozhansky, V.V. Rozhdestvensky, A.N. Saveliev, N.V. Sakharov, P.B. Shchegolev, O.N. Shcherbinin, I.Yu. Senichenkov, V.Yu. Sergeev, A.E. Shevelev, A.Yu. Stepanov, S.Yu. Tolstyakov, V.I. Varfolomeev, A.V. Voronin, E.G. Zhilin, A.Yu. Yashin, F. Wagner, E.A. Kuznetsov, V.A. Yagnov

- A.F. loffe Physico Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia
- Saint Petersburg State Polytechnical University, St. Petersburg, Russia
- D.V. Efremov Institutes of Electrophysical Apparatus, St. Petersburg, Russia
- Saint Petersburg State University, St. Petersburg, Russia
- IPT RRC "Kurchatov Institute", Moscow, Russia
- Ioffe Fusion Technologies Ltd, St. Petersburg, Russia
- RLPAT Saint Petersburg State Polytechnical University, St. Petersburg, Russia; Max-Planck Institute, Greifswald, Germany
- TRINITI, Troitsk, Moscow, Russia

Globus-M spherical tokamak demonstrated practically all of the project objectives

Maximal T and n values were obtained in different regimes

Close fitting wall; RGT tiles; Plasma gun; LH CD system

We propose the simplest way to improve plasma parameters: both magnetic field and plasma current 2.5 increase retaining other machine parts unchanged. The machine name is "Globus-M2" ST

"B-max" regime providing: $B_T(R=0.36) = 1 \text{ T for } \Delta t = 0.4 \text{ sec},$ $I_P = 0.5 \text{ MA for } 0.3 \text{ sec}$

"t-max" regime for noninductive current drive experiments providing:

 $B_T(R=0.36) = 0.7 T \text{ for } \Delta t = 0.8 \text{ sec}$

Objectives of Globus-M2 permit regime modeling for Compact Fusion Neutron Source (CNFS)

Globus-M confinement, heating, fast particle physics and edge plasma issues

Ohmic L and H-mode confinement

6 (24)

NB injection is the major instrument for plasma auxiliary heating in Globus-M

In spite of difficulties connected with a compact size of the machine good ion heating efficiency during NB injection observed at low density.

(2-4) · 10¹⁹ m⁻³

Fast particle first orbit losses at various major radii

- "Horizontal" lines approximate Fokker-Planck equation solution with slowing down losses and allow for direct losses estimate
- Direct fast particle losses is the main mechanism deteriorating NB plasma heating in Globus-M
- "Bump on tail" demonstrates additional source of losses

Sawteeth are responsible for additional fast particle direct losses, producing "bump on tail" distribution

Drastic decrease of fast particle losses can be achieved by total

magnetic field increase

TAE single n=1 mode excitation

H-NBI into D-plasma, E= 27 keV

loffe Physical-Technica

nstitute

- Magnetic field 2.5 fold increase make it possible 6 fold beam energy increase without TAE spectrum enrichment: $V_b/V_A \approx 1$ on Globus-M $V_b/V_A \sim \sqrt{E_b/B}$ at n_e=const
- Unlike TAE EPM is recorded as multimode excitation
- No additional Fast particle losses – evidence is neutron flux measurement
- Expectations for Globus-M2 are favourable

Prospects for edge plasma parameters is important issue for the upgraded machine

ICRH prospects for 1 T in Globus-M2

If B_T is increased from 0.4 to 1 T what will be benefits for ICRH heating by FMS waves at fundamental harmonic range?

Вт	0.4T	1 T
1f _{ci}	6.1	15.2
for H⁺	MHz	MHz

- Single pass resonance absorption of FMS waves increasing due to & decrease
- Ion-ion hybrid resonance absorption increasing
- High magnetic field improves fast ion confinement and heating efficiency

ICR heating efficiency increases with magnetic field raise from 0.4 T to 1 T

Particle	Fraction of power at 0.4 T	Fraction of power at 1.0 T
e	0,641	0.46
p⁺	0,260	0,38
d+	0,099	0,16

LH CD experiment in Globus-M and expectations for Globus-M2

Novel experimental arrangement was used in experiment with plasma breakdown, current ramp-up and sustainment by LH waves

NEW antennae with "toroidal" slow down:

Ntor \approx (6 – 7)

Npol ≈ 1

Vessel walls were totally protected by graphite

loffe Physical

nstitute

OLD antennae with "poloidal" slow down: $Ntor \approx (1.0 - 15)$ $Npol \approx (7 - 8)$

Total driven current comprises at least by 80% of noninductively driven current by LH waves at 900 MHz and 60 kW RF power launched

Comparison with other experiments...

Noninductively driven current forms plasma column with closed magnetic surfaces

Magnetic reconstruction by current filament method was used

Preliminary ray tracing simulations of noninductive CD drive by LH waves in Globus-M2

Globus-M2 parameter modeling

Globus-M regimes provides basis for ASTRA code modeling of Globus-M2 parameters

Instruments: ASTRA, NCLASS, NUBEAM codes

Reference case: Globus-M high density regime with $\chi_e \approx 8 \text{ m}^2/\text{s}$

Electrons heat transport

$$\tau_E^{IPB98(,2)} \sim I_p^{0.93} \cdot B^{0.15}$$

$$\chi_e^{\mathbf{G}l-M2} \approx \frac{1}{2.7} \chi_e^{\mathbf{G}l-M} \approx 3 m^2 / s$$

Spherical tokamak scaling (M.Valovic et al, Nucl. Fusion, 2009, V49, p075016)

$$\mathcal{T}_{E}^{Valovic} \sim I_{p}^{0.59} \cdot B^{1.4}$$

$$\chi_e^{\mathbf{G}l-M2} \approx \frac{1}{6.2} \chi_e^{\mathbf{G}l-M} \approx 1.3m^2 / s$$

Ions heat transport

$$\chi = \chi^{NEOCL} + \chi^{AN}$$

$$\chi_{i}^{AN} pprox D$$

Particle transport – unchanged

ASTRA simulation of $E_D = 30 \text{ keV}$, $P_{NB} = 1 \text{ MW NB}$ injection into Globus-M2 discharge demonstrates high value of temperature at density ~ 0.7 10^{20}m^{-3}

The analysis of Globus-M results on thermal and fast particle confinement, RF heating and CD led to the conclusion on magnetic field increase in Globus-M2

Upgrade allows for retaining the vacuum vessel and most part of the diagnostics and heating systems.

Substantial improvement in parameters can be expected for Globus-M2: density up to 10²⁰ m⁻³ and temperatures in keV range could be attained with high confidence.

The dimensionless parameter range for Globus-M2 allow conditions characteristic for a compact fusion neutron source experimental support.

