Local Current Injector Systems for Nonsolenoidal Startup in a Low Aspect Ratio Tokamak

> R.J. Fonck, M. Bongard, E. Hinson, B. Lewicki, A. Redd, G. Winz Department of Engineering Physics

> > University of Wisconsin-Madison, USA

24th IAEA Fusion Energy Conference (FEC2012)

> October 8-13, 2012 San Diego, CA

Motivation: Intense Electron Current Sources Needed for Local Helicity Startup

- Significant progress with non-solenoidal startup of ST
 - Exploiting local helicity injection via current sources in plasma edge region
 - Technical attractiveness: can remove sources and anode after startup
 - Understanding of helicity balance and relaxation current limits guide hardware and operational changes
 - Helicity injection discharges couple to other current drive methods
- Tests and development on the Pegasus Toroidal Experiment
 - $A \sim 1$; $I_p = 0.1-0.3$ MA; $B_{tf} = 0.15T$
 - $I_p \sim 0.17$ MA using helicity injection and outer-PF rampup; ~ 0.08 MA with HI only
 - Goal ≈ 0.3 -0.4 MA non-solenoidal Ip to extrapolate to next level/NSTX
 - Issues in physics understanding: j_{edge} , Z_{inj} , confinement, etc.
- Exploitation of point-source helicity startup requires large-area sources of intense electron current
 - Developing understanding and designs of robust electron sources based on plasma arc sources
 - Exploring possibility of simpler large-area sources via gas-fed electrodes
 - Requires 2 kV, 15 kA programmable power systems

LOCAL HELICITY INJECTION OFFERS SCALABLE NONSOLENOIDAL STARTUP

- Inject Helicity for ${\rm I}_{\rm p}$ startup using electron current source at the tokamak plasma edge
 - Ip limited by available helicity drive, including PF induction. Helicity balance gives:

$$I_{p} \leq \frac{A_{p}}{2\pi R_{0} \langle \eta \rangle} \left(V_{ind} + V_{eff} \right) \qquad V_{eff} \approx \frac{A_{inj} B_{\phi, inj}}{\Psi_{T}} V_{bias}$$

$$I_{p} \leq \left[\frac{C_{p}}{1 + C_{p}} - \frac{\Psi_{T} I_{inj}}{\Psi_{T}} \right]^{1/2}$$

- Max I_p set by relaxation to Taylor (constant λ) state: I_p
- Helicity dissipation thru resistive losses in plasma
- Maximizing I_p requires
 - Large helicity input rate: High A_{inj}, V_{inj}
 - High relaxation limit: High I_{in} , low w

$$_{p} \leq \left[\frac{C_{p}}{2\pi R_{inj}\mu_{0}}\frac{\Psi_{T}I_{inj}}{w}\right]$$

- A_p Plasma area
- C_p Plasma circumference
- $\Psi_{\rm T}$ Plasma toroidal flux
- w Edge current channel width

OUTER LFS INJECTION ADDS POLOIDAL INDUCTION TO HELICITY INJECTION

- Flexible geometry for injector locations
 - Outer midplane allows "port-plug" installation
- PF null via injection into helical (TF + PF) field; followed by relaxation to tokamak-like state
 - Rapid inward expansion and growth in I_p at low A
- Poloidal field induction adds to current growth

Inboard HFS Injection in Divertor Region Maximizes Helicity Input Rate

- HFS injection near centerstack maximizes
 helicity input rate
- Reduced plasma position control requirements
 - Static fields support easy control of position

Current filaments Relaxed tokamak

Plasma Arc Sources

Compact Plasma Arc Sources Provide Dense Plasma for Electron Current Extraction

- Plasma arc(s) biased relative to anode:
 - Helicity injection rate:

$$\dot{K}_{inj} = 2V_{inj}B_N A_{inj}$$

V_{ini} - injector voltage

- B_N normal B field at gun aperture
- A_{inj} injector area

Anode BN Sleeve Anode Anode cap **BN** Washer Moly washer Anode -Cathode cup Cathode Outer limiter Plasma guns Stainless Steel Grade HP Boron Nitride Gas valve Molybdenum HP Alumina OFHC Alloy 101 G10/FR4

RJF 24th IAEA 2012

1 Fiksel, G, et. al., Plasma Sources Sci. & Tech. 5 (1996) 78.

∕lo ode

lo node

EEK -SS

Robust Switching Power Supplies Deployed for Arc & Injection

- Plasma Arc uses simple Pulse Forming Network
 - Once arc is established: $I_{arc} = 1-2 \text{ kA} \textcircled{a} V_{arc} = 100-200 \text{ V}$
 - SCR terminates arc on demand
- Injection (Bias) circuit uses 4 IGCT switches in parallel
 - Total: $I_{inj} \le 14 \text{ kA} @ V_{inj} \le 2.2 \text{ kV}$
 - Preprogrammed current control via stabilized PWM feedback controller
 - Series inductance stabilized, sometimes with parallel stabilizing capacitor and ballast resistor

Power Systems Provides Routine Programmable Injected Current and Helicity

- Injection circuit provides current feedback control
 - Impedance varies with resulting tokamak plasma so that V_{inj} varies through shot
 - Future upgrade: go to voltage feedback control
 - Active control of helicity injection rate
- Arc circuit fully ionizes injected gas
 - $I_{arc} \sim 2-4 \text{ kA} @ V_{arc} \sim 150 \text{ V}$
 - With 1.6 cm diameter arc chamber, routine operation at 2 kA, with reduced lifetime at 4 kA
- Shot sequence
 - Inject gas flow into arc chamber
 - Strike Arc current; allow ~ 1ms to establish arc
 - Extract I_{inj} ; usually with $I_{inj} < I_{arc}$

Arc Source Impedance

Predictive Impedance Models Required to Project to Future Startup Systems

- Current injector impedance is a critical parameter in local helicity injection startup
 - I_{inj} sets Taylor relaxation maximum Ip
 - V_{inj} sets effective V_{loop} for current drive
 - Impedance couples the two to define power requirements
- Double-sheath space-charge limits I_{inj} at low I_{inj} and V_{inj}

$$\boldsymbol{J}_{e} = \frac{4}{9} \boldsymbol{\varepsilon}_{o} \sqrt{\frac{2e}{m_{e}}} \frac{\boldsymbol{V}^{3/2}}{(\boldsymbol{\chi}\boldsymbol{\lambda}_{De})^{2}}$$

• At high I_{inj} (> I_A) and V_{inj} > 10 kT_e/e, the Alfven-Lawson magnetic current limit dominates

$$I_{AL}^{e} = 1.65 \frac{4\pi m_{e} v_{e}}{e\mu_{o}} = 1.65 I_{A} = 56 \sqrt{V_{inj}}$$

- For a uniform current density
- Possible that sheath expansion also contributes in this region
- So far, these models and supporting evidence imply impedance determined by processes local to the injector and not the background plasma

Helicity Injection Process Governed by Space **Charge and Magnetic Current Limits**

- Arc source I-V characteristics obtained during plasma startup 10⁴-
- Double-sheath space-charge limits I_{ini} at low I_{ini} and V_{ini} : Initiation phase Bias Current (A)
 - $I_{ini} \sim n_e V^{3/2}$
- At high $I_{inj} > I_A$ and $V_{inj} > 10$ kT_e/e, the Alfven-Lawson magnetic current limit dominates
 - I_{ini} ~ V^{1/2}
 - Possible that sheath expansion also contributes here

Density Scaling in Injector Impedance May Reflect e⁻ Beam Profiles?

- I-V characteristics at varied fueling rates suggests a scaling with arc density
- Density variation may reflect changes in beam current density profile
 - Alfven: uniform j with backward particle flow

$$I_{AL}^{e} = 1.65 \frac{4\pi m_{e} v_{e}}{e\mu_{o}} = 1.65 I_{A} = 56 \sqrt{V_{inj}}$$

- Davies: Uniform profile and Bennett profile for j(r)
 - Derived from energy conservation

Bias Voltage (V)

$$I_{uniform}^{e} = 4.0 \frac{4\pi m_{e} v_{e}}{e\mu_{o}} = 134 \sqrt{V_{inj}}$$

$$I_{Bennett}^{e} = 2.59 \frac{4\pi m_e v_e}{e\mu_o} = 88 \sqrt{V_{inj}}$$

 Data shows inferred trends but detailed measurements needed

Exploring Passive Injectors to Increase Helicity Injection Rates

- Maximizing Helicity (i.e., current drive) requires
 large area electron emitters
- Two possible paths
 - Large area active high-density plasma sources
 - Passive electron emission through driven electrodes
- To mitigate the effort in producing electron current, it is worthwhile to explore simple passive (i.e., no plasma arc) current sources
 - Form initial tokamak-like state with minimal active arc gun
 - Increase I_p with passive electrodes.
 - Critical feature is how to diffuse the current extracted from metallic electrode
- First tests were promising
 - Arc current cut off after relaxation and formation of tokamaklike state
 - Gas fueling through chamber continued
 - I_p rise is virtually the *same*, whether arc discharge or passive electrode provide the charge carriers
 - Suggests continuing development of electrode emitters

RJF 24th IAEA 2012

Identical Discharge Evolution Seen with Plasma Arc Turned Off

- Arc crowbarred out after tokamak discharge established to transition from arc plasma source to driven electrode system
 - Keep electrode widths narrow to maintain Taylor limit
 - Some limitations from PMI interactions at Mo/BN interface
- Demonstrated transition from active gun drive to passive electrode drive
 - Same extracted current whether arc is on or off, with same gas flow
 - Driven I_p virtually identical

"Slot" Mo faces

- Camera (low-res) images suggest similar current source regions

Electrode with Integrated Gas Feed Behaves Similarly to Arc Source

- Simple gas-fed electrode replaced a single arc source to test electrode concept
 - Passive electrode turns on spontaneously after 2 arc sources establish discharge
 - Discharge evolution to similar 3-arc source plasma
 - Suggests effective area of ~ size of gas source region
- Current ~ equally shared amongst 3 injectors

t = 21.25 ms t = 21.44 ms

- The integrated arc plasma and electrode system has evolved to provide mitigation against plasma interactions
 - BN "Bell" to avoid arc back to ground
 - Electrode raised above BN shield
 - PV-10 gas valve installed
 - Floating Mo shield plate
 behind electrode

Electrode Systems Evolved to Mitigate Deleterious Plasma-Material Interactions

- N dominant impurity with unprotected gun assembly
 - $Z_{eff} \sim 2.2$. +/- 0.8 during; ≤ 1.4 after injection
- Local scraper limiters reduce N from _ unprotected gun case
 - Also controls local edge $\rm N_{e}$ and injector impedance
 - O dominant impurity in OH and "well-behaved", helicity-driven plasmas
- Mo backing plate reduces BN interactions and undesired gas emission
 - Arc-backs to limiter still occur at times

Extended Passive Electrode Tested as 1st Possibility for Large-Area Source

- Tests of current distribution on metallic electron emitter
 - No gas feed through electrode
 - Current in presence of plasma emitted from localized cathode spots
 - Similar to emission in vacuum
 - ~200-400 A per spot
 - For $I_{inj} \sim 6kA$, max effective area < 0.3 cm² ~ $A_{arc}/4$
 - Both single arc source and large passive electrode give similar I_p, well below the relaxation limit
 - Limit demonstrated with additional OH V_{loop}
- Need integrated gas fueling to spread I_{arc} across large area
 - Tests with single arc source cap underway to confirm and optimize

Small cathode spots emit current from simple metallic electrode

Summary: Significant Progress in Developing Edge Current Sources for Local Helicity Injection

- Miniature plasma arc sources provide local current sources for nonsolenoidal startup of ST and other confinement devices
 - Very flexible geometry options
 - Can be combined with poloidal field induction when located in HFS region
 - Technical attractiveness: can remove sources and anode after startup
 - 1-2 kA/cm² available; low impurity content
- Arc source impedance, and helicity injection rate, appears to be governed by sheath effects and magnetic current limits
 - Further tests needed to understand apparent density scaling
- High helicity input requires large area current source and narrow current channel in edge region
 - Preliminary tests suggest gas-fed electrodes may be combined with arc sources to drive high I_p
- Electrode design requires PMI mitigation techniques *RJF 24th IAEA 2012*

