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Motivation: Intense Electron Current 
Sources Needed for Local Helicity Startup 

•  Significant progress with non-solenoidal startup of ST 
–  Exploiting local helicity injection via current sources in plasma edge region 
–  Technical attractiveness: can remove sources and anode after startup 

–  Understanding of helicity balance and relaxation current limits guide hardware and operational 
changes 

•  Helicity injection discharges couple to other current drive methods 

•  Tests and development on the Pegasus Toroidal Experiment 
–  A ~ 1; Ip = 0.1-0.3 MA; Btf = 0.15T 
–  Ip ~ 0.17 MA using helicity injection and outer-PF rampup; ~ 0.08 MA with HI only 
–  Goal ≈ 0.3-0.4 MA non-solenoidal Ip to extrapolate to next level/NSTX 

•  Issues in physics understanding: jedge, Zinj, confinement, etc. 

•  Exploitation of point-source helicity startup requires large-area sources of intense 
electron current 

–  Developing understanding and designs of robust electron sources based on plasma arc sources 
–  Exploring possibility of simpler large-area sources via gas-fed electrodes 
–  Requires 2 kV, 15 kA programmable power systems 
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LOCAL HELICITY INJECTION OFFERS 
SCALABLE NONSOLENOIDAL STARTUP 
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•  Inject Helicity for Ip startup using electron current source 
at the tokamak plasma edge 
–  Ip limited by available helicity drive, including PF induction. Helicity 

balance gives: 

–  Max Ip set by relaxation to Taylor (constant λ) state: 
–  Helicity dissipation thru resistive losses in plasma 

 

 

•  Maximizing Ip requires 
•  Large helicity input rate: High Ainj, Vinj 

•  High relaxation limit: High Iinj, low w 
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OUTER LFS INJECTION ADDS POLOIDAL 
INDUCTION TO HELICITY INJECTION 

•  Flexible geometry for injector 
locations 
–  Outer midplane allows “port-plug” 

installation 

•  PF null via injection into helical 
(TF + PF) field; followed by 
relaxation to tokamak-like state 
–  Rapid inward expansion and growth 

in Ip at low A 
 

•  Poloidal field induction adds to 
current growth 

Anode"

3 plasma guns"Plasma 
streams"

PEGASUS shot #40458: two midplane guns, outer-PF ramp"

Ip=2-3 kA 
Filaments only 

Ip=42 kA 
Driven plasma 

Ip=37 kA 
Guns off 
 Decaying 
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Inboard HFS Injection in Divertor Region 
Maximizes Helicity Input Rate 

Increased Iinj 
Reduced Bz 

Relaxed tokamak Current filaments 

•  HFS injection near centerstack maximizes 
helicity input rate 

•  Reduced plasma position control requirements 
–  Static fields support easy control of position 
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Plasma Arc Sources 
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Compact Plasma Arc Sources Provide Dense 
Plasma for Electron Current Extraction 

•  Plasma arc(s) biased relative to anode: 
–  Helicity injection rate: 

  

 Vinj - injector voltage 

 BN - normal B field at gun aperture 

 Ainj - injector area 
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•  Arc plasma fully ionized 

–  Ne ~ 1020 m-3 

–  Te ~ 10 eV 

–  Dia = 1.6 cm 

–  Iarc ~ 2 kA 
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Robust Switching Power Supplies 
Deployed for Arc & Injection 

•  Plasma Arc uses simple Pulse Forming Network 
–  Once arc is established: Iarc = 1-2 kA @ Varc = 100-200 V 
–  SCR terminates arc on demand 

•  Injection (Bias) circuit uses 4 IGCT switches in parallel 
–  Total: Iinj ≤ 14 kA @ Vinj ≤ 2.2 kV 
–  Preprogrammed current control via stabilized PWM feedback controller 
–  Series inductance stabilized, sometimes with parallel stabilizing capacitor and ballast resistor 
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Power Systems Provides Routine 
Programmable Injected Current and Helicity 

•  Injection circuit provides current feedback 
control 

–  Impedance varies with resulting tokamak 
plasma so that Vinj varies through shot 

–  Future upgrade: go to voltage feedback control 
•  Active control of helicity injection rate 

•  Arc circuit fully ionizes injected gas 
–  Iarc ~ 2-4 kA @ Varc ~ 150 V 

–  With 1.6 cm diameter arc chamber, routine 
operation at 2 kA, with reduced lifetime at 4 kA 

•  Shot sequence 
–  Inject gas flow into arc chamber 

–  Strike Arc current; allow ~ 1ms to establish arc 

–  Extract Iinj; usually with Iinj < Iarc 

Varc 

Iarc 

Ip 

Vinj 

Iinj 
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Arc Source Impedance 
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Predictive Impedance Models Required 
to Project to Future Startup Systems 

•  Current injector impedance is a critical parameter in local helicity injection startup 
–  Iinj sets Taylor relaxation maximum Ip 
–  Vinj sets effective Vloop for current drive 
–  Impedance couples the two to define power requirements 

•  Double-sheath space-charge limits Iinj at low Iinj and Vinj 

 

•  At high Iinj (> IA) and Vinj > 10 kTe/e, the Alfven-Lawson magnetic current limit dominates 
 
 

 

 

 

–  For a uniform current density 
–  Possible that sheath expansion also contributes in this region 

•  So far, these models and supporting evidence imply impedance determined by processes local 
to the injector and not the background plasma 
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Helicity Injection Process Governed by Space 
Charge and Magnetic Current Limits 

I-V characteristics of arc plasma current 
injector for varied fueling rates. 

•  Arc source I-V characteristics 
obtained during plasma startup 

 

•  Double-sheath space-charge 
limits Iinj at low Iinj and Vinj : 
Initiation phase 

–  Iinj ~ neV3/2 

•  At high Iinj > IA and Vinj > 10 
kTe/e, the Alfven-Lawson 
magnetic current limit 
dominates 
–  Iinj ~ V1/2 

–  Possible that sheath expansion also 
contributes here 
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Density Scaling in Injector Impedance 
May Reflect e- Beam Profiles? 

•  I-V characteristics at varied fueling 
rates suggests a scaling with arc 
density 

•  Density variation may reflect 
changes in beam current density 
profile 

–  Alfven: uniform j with backward 
particle flow 

 
–  Davies: Uniform profile and Bennett 

profile for j(r) 
•  Derived from energy conservation 

•  Data shows inferred trends but 
detailed measurements needed 
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Current Injection via Gas-Fed Electrodes 
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Measured Iinj 
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Exploring Passive Injectors to Increase 
Helicity Injection Rates 

 

•  Maximizing Helicity (i.e., current drive) requires 
large area electron emitters 

•  Two possible paths 
–  Large area active high-density plasma sources 
–  Passive electron emission through driven electrodes 
 

•  To mitigate the effort in producing electron current, 
it is worthwhile to explore simple passive (i.e., no 
plasma arc) current sources 

–  Form initial tokamak-like state with minimal active arc gun 
–  Increase Ip with passive electrodes. 
–  Critical feature is how to diffuse the current extracted from 

metallic electrode 
 

•  First tests were promising 
–  Arc current cut off after relaxation and formation of tokamak-

like state 
–  Gas fueling through chamber continued 
–  Ip rise is virtually the same, whether arc discharge or passive 

electrode provide the charge carriers 
–  Suggests continuing development of electrode emitters 
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Identical Discharge Evolution Seen with 
Plasma Arc Turned Off 
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•  Arc crowbarred out after tokamak discharge 
established to transition from arc plasma source to 
driven electrode system 

–  Keep electrode widths narrow to maintain Taylor limit 

–  Some limitations from PMI interactions at Mo/BN interface 

•  Demonstrated transition from active gun drive to 
passive electrode drive 

–  Same extracted current whether arc is on or off, with same gas flow 

–  Driven Ip virtually identical 

–  Camera (low-res) images suggest similar current source regions 

“Slot” Mo faces"
with BN caps"

Arc 
ON 

Arc 
OFF 
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Electrode with Integrated Gas Feed 
Behaves Similarly to Arc Source 

•  Simple gas-fed electrode replaced a 
single arc source to test electrode 
concept 
–  Passive electrode turns on spontaneously after 2 

arc sources establish discharge 
–  Discharge evolution to similar 3-arc source 

plasma 
•  Suggests effective area of ~ size of gas 

source region 

•  Current ~ equally shared amongst 3 
injectors 
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Large Area Electrode Development/Tests 

•  The integrated arc plasma and electrode system has 
evolved to provide mitigation against plasma interactions 
–  BN “Bell” to avoid arc back to ground 
–  Electrode raised above BN shield 
–  PV-10 gas valve installed 
–  Floating Mo shield plate  

 behind electrode 
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Electrode Systems Evolved to Mitigate 
Deleterious Plasma-Material Interactions 
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•  N dominant impurity with unprotected gun 
assembly 

–  Zeff ~ 2.2. +/- 0.8 during; ≤ 1.4 after injection  
 

•  Local scraper limiters reduce N from 
unprotected gun case 

–  Also controls local edge Ne and injector 
impedance 

–  O dominant impurity in OH and “well-behaved” 
helicity-driven plasmas 

•  Mo backing plate reduces BN interactions 
and undesired gas emission 

–  Arc-backs to limiter still occur at times 

800

600

400

200

0In
te

n
s
it

y
 (

c
o
u
n
ts

)

40

30

20

10

0

In
te

n
s
it

y
 (

c
o
u
n
ts

)

120010008006004002000

Wavelength (A)

3000

2000

1000

0In
te

n
s
it

y
 (

c
o
u
n
ts

)

1600

1200

800

400

0In
te

n
s
it

y
 (

c
o
u
n
ts

)

No limiters 
47344 

Scraper limiters 
52945 

Scraper limiters 
BN “flare”  53469 

OH driven 
52415 

500

400

300

200

100

0

5004003002001000

58932 - 24.2ms

RJF 24th IAEA 2012 



Extended Passive Electrode Tested as 
1st Possibility for Large-Area Source 

•  Tests of current distribution on metallic electron 
emitter 

–  No gas feed through electrode 
–  Current in presence of plasma emitted from localized cathode spots 

•  Similar to emission in vacuum 
•  ~200-400 A per spot 
•  For Iinj ~ 6kA, max effective area < 0.3 cm2 ~ Aarc/4 

–  Both single arc source and large passive electrode give similar Ip, 
well below the relaxation limit 

•  Limit demonstrated with additional OH Vloop 

•  Need integrated gas fueling to spread Iarc across large 
area 

–  Tests with single arc source cap underway to confirm and optimize 
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Summary: Significant Progress in Developing Edge 
Current Sources for Local Helicity Injection 

•  Miniature plasma arc sources provide local current sources for non-
solenoidal startup of ST and other confinement devices 
–  Very flexible geometry options 

•  Can be combined with poloidal field induction when located in HFS region 

–  Technical attractiveness: can remove sources and anode after startup 

–  1-2 kA/cm2 available; low impurity content 

•  Arc source impedance, and helicity injection rate, appears to be 
governed by sheath effects and magnetic current limits 
–  Further tests needed to understand apparent density scaling 

•  High helicity input requires large area current source and narrow current 
channel in edge region 
–  Preliminary tests suggest gas-fed electrodes may be combined with arc sources 

to drive high Ip 

–  Electrode design requires PMI mitigation techniques 
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