Recent Advances in Radiation Materials Science from the US Fusion Reactor Materials Program

R. E. Stoller¹, D. W. Clark², N. M. Ghoniem³, Y. Katoh¹, R. J. Kurtz⁴, J. Marian³,
G. R. Odette⁵, B. D. Wirth⁶, T. Yamamoto⁵, and S. J. Zinkle⁶

¹Oak Ridge National Laboratory, ²Office of Fusion Energy Sciences, Department of Energy, ³University of CA, Los Angeles, ⁴Pacific Northwest National Laboratory, ⁵University of CA, Santa Barbara, ⁶University of TN, Knoxville, **USA**

26th IAEA Fusion Energy Conference

Kyoto, Japan 17–22 October 2016

Research supported by the U.S. Department of Energy, Office of Fusion Energy Sciences

Introduction

- US fusion reactor materials (FRM) program coordinates efforts across several institutions, employs an integrated approach of computational materials science and extensive irradiation programs (primarily HFIR)
- augmented by research on plasma-materials interaction and reactor design studies, extensive international collaborations
- focused on radiation effects in candidate materials with emphasis on:
 - advanced ferritic-martensitic (FM) steels, including oxide-dispersionstrengthened (ODS) and castable nanostructured alloy (CNA) variants,
 - SiC and SiC/SiC composites
 - tungsten and possible W alloys
 - properties of interest include: microstructural stability, dimensional stability (e.g. swelling and creep), mechanical properties (e.g. strength and ductility), physical properties (e.g. thermal conductivity), response to high heat flux testing
- primary international collaborations:
 - Nat. Inst. for Quantum and Radiological Science and Technology (Japan)
 - PHENIX (Japanese universities)
 - EUROfusion/KIT (EU, in preparation)

Current US Program Activities – FM SteelsAlloy (Material) DevelopmentFission Neutron Irradiation

Helium: Fusion Materials Grand Challenge

- He effects remain a major unquantified challenge for fusion structural materials – <u>lack of fusion-relevant irradiation facility</u>
- Scientific challenge understanding and modeling
- Engineering challenge predicting and mitigating
- Developing quantitative physically based predictive models for how properties change as f(dpa, He, T_i, alloy, test conditions).

FM He Effects: Swelling, Hardening and Fracture

- ISHI¹, DI², STIP³ ΔV/V incubation dose=f(He/dpa)
- High He expands $\Delta \sigma_i$ dpa and T-range (STIP)
- Possible He threshold ≈ 500 appm
- He transport-fate-consequences master model

He-weakened grain boundary fracture

Radiation Effect Studies in FM Steels

Post irradiation tensile tests on F82H

Neutron irradiation studies on fusion steels are conducted HFIR primarily in DOE-QST collaboration.

Development of ODS alloys for fusion systems Two paths are being pursued

1) ODS Fe-Cr for very high performance: 14YWT developed starting in 2001

Change in Yield Strength (MPa)

Ultra-small grains & high ND of nano-size oxides Y-Ti-O oxide particles J.5 μm 50 nm

2) ODS Fe-Cr-Al for Pb-Li compatibility

- ODS Fe-12Cr-5AI-Zr alloy exhibited unprecedented creep resistance at 700-800°C due to fine Y₃Al₅O₁₂ precipitates
- Co-precipitation with Zr(C,N) increased oxide particle number density
- Need irradiation testing

Commercial PM2000

5.000

Fe-20Cr-5Al -Y-Ti 800°C

Time to rupture (h)

10,000

15,000

40

20

Castable Nanostructured Alloys (CNAs)

- With the aid of computational thermodynamics, CNAs are being developed to significantly increase the density of MX-type ultrafine precipitates.
- It's expected to fill the gap between current FM steels and developmental NFA/ODS alloys in terms of radiation resistance and hightemperature strength.
- Strength and toughness are screened to down-select alloys for detailed studies.
- Preliminary ion irradiation experiment and weldability study showed promising results.
- Detailed property tests will be pursued on new heats from the down-selected alloys.

[L. Tan, L.L. Snead, Y. Katoh, *J. Nucl. Mater.* 478 (2016) 42.]

Bainitic Steel Development

<u>Objective</u>: to develop a new PWHT-free bainitic steel with improved properties

- possible application to vacuum vessel and support structure
- based on 3Cr-3WVTa bainitic steel
- control microstructure evolution via compositional optimization

Task 1: Alloy Design

- utilize computational thermodynamics to predict phase equilibrium and transformation kinetics
- support from broad steel development expertise at ORNL (Mod. 9Cr-1Mo, 9Cr–2WVTa, 14YWT, HT-UPS, AFA, CNA, etc.)

Task 2: Property evaluation

- comprehensive property evaluation including tensile, creep, toughness, improved toughness observed.
 - HFIR irradiation testing

Friction Stir Welding of Oxide Dispersion Strengthened and Ferritic Martensitic Steels

Cross sectional view of dissimilar alloy friction stir weld cross-section between two steels - ODS MA956 and RAFM EUROFER97

Z. Yu, Z. Feng, D. Hoelzer, L. Tan, M. Sokolov, "Friction Stir Welding of ODS and RAFM Steels," *Metallurgical and Materials Transactions 2E (2015)164-172 DOI: 10.1007/s40553-015-0054-9.*

Scientific Achievement

 Demonstrated successful solid-state joining of ODS to FM steels by the friction stir welding process.

Significance and Impact

 Successful joining of ODS and FM steels removes a major engineering barrier to the use of these alloys for fusion reactors

Research Details

- Defect free welds were achieved
- Microstructural changes induced by FSW can be minimized by post weld heat treatment
- As-welded FSW exhibits excellent creep resistance
- Dynamic recrystallization formed fine grains in the stir zone of ODS alloy

Development of SiC composites

Joining technology

Advanced defect characterization

Continuum and Discrete Finite Element Damage Models of SiC Joints

• 3D finite element model subject to torsion with homogenized joint and elastic-damage models

- Model correctly predicts generic response of joint failures with strong modulus effects and explains torsion specimen failure modes
 - In-plane and out-of-plane failures captured by finite element elastic-plastic damage models
- However, internal joint microstructure plays a role in joint failures and this model does not address joint microstructure

HFIR Irradiated SiC Joints Show Complex Damage at Several Length Scales

 3D FE model is extended to include a FE mesh at the microstructural scale using digital images and NIST OOF2 software

- Damage model applied to each phase separately and more failure details emerge
- Cracks (red areas) initiate in the SiC phase along the interfaces and also inside the joint at dissimilar interfaces
 - These details appear to correlate with observed damage modes after HFIR irradiation
- Future work will include thermal stresses and dissimilar irradiation-induced swelling

Ductile-phase Toughening of Tungsten for Fusion

- Development of tungsten-based composites with greatly improved fracture resistance relative to monolithic tungsten is underway that capitalizes on the extensive work on toughening of brittle ceramics and intermetallic phase composites
- Notched three-point bend fracture experiments have been performed on a W-Cu composite and a W-Ni-Fe alloy
- Initial results show that ductile phases contribute significantly to increasing fracture resistance
- Sophisticated crack-bridging models are being developed to treat crack growth in brittle matrix composites and design highstrength, high-ductility plasma facing components for fusion

Other Ductile-phase Toughened Alloys

- 90-97 wt%W:NiFe alloys have very high initiation RT toughness, ultrastable crack growth & good tensile strength and ductility
- Weak to modest dependence on W content
- Toughening from crack wake bridging & process zone plasticity

Development of new Fe-He potential and equation of state

- fitted to both energies and forces of relaxed and unrelaxed defect configurations obtained from VASP *ab initio* calculations for a range of He and He/vacancy defects, up to He₃V
- results indicate tetrahedral site is most stable for He, required addition of a 3-body term to the typical embedded atom potential

$$Y(r_{ij}, r_{ik}, \Theta_{ijk}) = \sum_{j,k\in Fe} \cos^2(\Theta_{ijk} - 0.44) f_{cut}(r_{ij}) f_{cut}(r_{ik})$$

 potential used in MD to determine P-V behavior of He in bubbles, results used to revise previous "hard sphere" equation of state for He

compressibility:
$$Z = \frac{pV}{mkT} = (1 + y + y^2 - y^3)(1 - y)^{-3}$$

 $y = \frac{\pi d_g^3}{6} \frac{m}{V}, d_g = a_1(a_2 - a_3 \cdot \ln(T(K)/a_4))$

MD simulations used to investigate dislocationdefect interactions

- fundamental plastic behavior of Fe and W, dislocation structure and mobility
- strengthening and hardening of structural materials due to radiationinduced defects
- primary objectives are:
 - elucidate atomistic reactions responsible for hardening
 - provide data for coarser scale elasticity and rate theory based predictions
 - provide direct verification with specially designed experiments.

Fe strengthening due to localized obstacles

"Fuzz" formation in W plasma-facing material

Atomistic investigations of unit mechanisms that contribute to surface roughening in tungsten exposed to low-energy He, a possible precursor to fuzz formation.

Large-scale MD simulation, 1.5 ms, W (111) surface, $f_{He}=4x10^{25}$ He/m²/s

Surface morphology: red, yellow, and white are surface regions elevated to different distances by underlying He bubbles

Crystal plasticity model for single crystal W informed by atomistic calculations

Atomistic calculations of

- Very successful prediction of yield strength.
- Working towards an extension of this modeling to W-Re, polycrystalline systems.

Summary

- Primary materials challenges for successful fusion energy include: (1) developing structural materials with suitably long lifetimes, (2) obtaining a plasma-facing material with sufficient ductility and low tritium retention, and (3) verifying the performance of functional materials
- Key computational results include development of:
 - a new He-Fe interatomic potential and equation of state for atomistic simulations of helium effects in irradiated steels
 - a detailed kinetic model describing the behavior of helium and its use to predict swelling and embrittlement in FM steels and their ODS variants
 - successful development of continuum and discrete finite element damage models of SiC joints
 - integrated computational approach for investigating near-surface mechanisms responsible for "fuzz" formation on W surfaces
 - atomistically informed model for crystal plasticity of W
 - integrated models for design of fusion reactor components

Summary, cont.

- Key experimental results and insights include:
 - use of dual ion, spallation, and neutron irradiation with *in situ* implantation of He demonstrates a strong correlation between He/dpa ratio and both swelling and mechanical properties, swelling is reduced in ODS relative to conventional FM steels
 - ODS and CNA variants exhibit high strength and longer creep lifetimes than conventional FM steels
 - successful use of friction stir welding on ODS and FM steel components
 - high-dose neutron irradiation of advanced nuclear grade SiC demonstrate limited effects on high-temperature strength with only modest swelling and reduction in thermal conductivity;
 - impact of He on SiC microstructure observed, impact on mechanical properties is being assessed;
 - good progress in development of radiation-resistant joints for SiC composites
 - ductility of W and alloys such as W-Re remains problematic, possible ductilephase toughening being explored
 - progress in mechanistic understanding of "fuzz" formation on W PFC, approach to mitigation not clear
- Need for a fusion-relevant neutron source remains a high priority to enable materials qualification for machines beyond ITER