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Introduction 

• US fusion reactor materials (FRM) program coordinates efforts across several 

institutions, employs an integrated approach of computational materials science 

and extensive  irradiation programs (primarily HFIR) 

• augmented by research on plasma-materials interaction and reactor design 

studies, extensive international collaborations 

• focused on radiation effects in candidate materials with emphasis on: 

– advanced ferritic-martensitic (FM) steels, including oxide-dispersion-

strengthened (ODS) and castable nanostructured alloy (CNA) variants,  

– SiC and SiC/SiC composites 

– tungsten and possible W alloys 

– properties of interest include: microstructural stability, dimensional stability 

(e.g. swelling and creep), mechanical properties (e.g. strength and 

ductility), physical properties (e.g. thermal conductivity), response to high 

heat flux testing 

• primary international collaborations: 

– Nat. Inst. for Quantum and Radiological Science and Technology (Japan) 

– PHENIX (Japanese universities) 

– EUROfusion/KIT (EU, in preparation) 
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Current US Program Activities – FM Steels 
Alloy (Material) Development 
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Helium: Fusion Materials Grand Challenge 

• He effects remain a major unquantified challenge for fusion 

structural materials – lack of fusion-relevant irradiation facility 

• Scientific challenge - understanding and modeling 

• Engineering challenge - predicting and mitigating 

• Developing quantitative physically based predictive models for 

how properties change as f(dpa, He, Ti, alloy, test conditions). 
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FM He Effects: Swelling, Hardening and Fracture 
• ISHI1, DI2, STIP3 ΔV/V incubation dose= f(He/dpa) 

• High He expands Δσi dpa and T-range (STIP)  

• Possible He threshold ≈ 500 appm 

• He transport-fate-consequences master model  
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Radiation Effect Studies in FM Steels 

• Neutron irradiation studies on fusion steels are conducted 

HFIR primarily in DOE-QST collaboration. 
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Development of ODS alloys for fusion systems 
Two paths are being pursued  

1) ODS Fe-Cr for very high performance: 14YWT developed starting in 2001  

2) ODS Fe-Cr-Al for Pb-Li compatibility 

Ultra-small grains & high ND of nano-size oxides High sink strength  
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Castable Nanostructured Alloys (CNAs) 
• With the aid of computational 

thermodynamics, CNAs are being 

developed to significantly increase the 

density of MX-type ultrafine 

precipitates.  

– It’s expected to fill the gap between current FM 

steels and developmental NFA/ODS alloys in 

terms of radiation resistance and high-

temperature strength. 

• Strength and toughness are screened 

to down-select alloys for detailed 

studies.   

• Preliminary ion irradiation experiment 

and weldability study showed 

promising results. 

• Detailed property tests will be pursued 

on new heats from the down-selected 

alloys. 

[L. Tan, L.L. Snead, Y. Katoh, J. Nucl. Mater. 

478 (2016) 42.] 
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Bainitic Steel Development 

Objective: to develop a new PWHT-free 
bainitic steel with improved properties 

– possible application to vacuum vessel and 
support structure  

– based on 3Cr-3WVTa bainitic steel 

– control microstructure evolution via compositional 
optimization 

Task 1: Alloy Design 

– utilize computational thermodynamics to predict phase 
equilibrium and transformation kinetics 

– support from broad steel development expertise at 
ORNL (Mod. 9Cr-1Mo, 9Cr–2WVTa, 14YWT, HT-UPS, 
AFA, CNA, etc.) 

Task 2: Property evaluation 

– comprehensive property evaluation including tensile, 
creep, toughness, improved toughness observed. 

– HFIR irradiation testing 
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Friction Stir Welding of Oxide Dispersion 

Strengthened and Ferritic Martensitic Steels 

• Scientific Achievement 
– Demonstrated successful solid-state 

joining of ODS to FM steels by the 

friction stir welding process.  

• Significance and Impact 
– Successful joining of ODS and FM 

steels removes a major engineering 

barrier to the use of these alloys for 

fusion reactors  

• Research Details 
– Defect free welds were achieved 

– Microstructural changes induced by 

FSW can be minimized by post weld 

heat treatment 

– As-welded FSW exhibits excellent 

creep resistance 

– Dynamic recrystallization formed 

fine grains in the stir zone of ODS 

alloy Z. Yu, Z. Feng, D. Hoelzer, L. Tan, M. Sokolov , “Friction Stir 
Welding of ODS and RAFM Steels,” Metallurgical and Materials 
Transactions 2E (2015)164-172  DOI: 10.1007/s40553-015-0054-9. 
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Development of SiC composites 

Irradiation of SiC/SiC 
to 100dpa 

Joining technology 

High-dose irradiation 
creep 

Advanced defect characterization  

• Raman 
spectroscopy 

• Positron 
annihilation 

• High energy 
X-ray 
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Continuum and Discrete Finite Element 

Damage Models of SiC Joints 

r = 0.5 mm 

• 3D finite element model subject to torsion with 
homogenized joint and elastic-damage models 

 

 

 

 

 

 

 

• Model correctly predicts generic response of joint 
failures with strong modulus effects and explains 
torsion specimen failure modes 

 In-plane and out-of-plane failures captured by 
finite element elastic-plastic damage models 

• However, internal joint microstructure plays a role 
in joint failures and this model does not address 
joint microstructure 
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HFIR Irradiated SiC Joints Show Complex 

Damage at Several Length Scales 
• 3D FE model is extended to include a FE mesh at the 

microstructural scale using digital images and NIST 
OOF2 software 

 

 

 

 

 

 

• Damage model applied to each phase separately 
and more failure details emerge 

• Cracks (red areas) initiate in the SiC phase along 
the interfaces and also inside the joint at dissimilar 
interfaces 

 These details appear to correlate with observed damage 
modes after HFIR irradiation 

• Future work will include thermal stresses and 
dissimilar irradiation-induced swelling 
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Ductile-phase Toughening of Tungsten for Fusion 

• Development of tungsten-based 

composites with greatly improved fracture 

resistance relative to monolithic tungsten 

is underway that capitalizes on the 

extensive work on toughening of brittle 

ceramics and intermetallic phase 

composites 

• Notched three-point bend fracture 

experiments have been performed on a W-

Cu composite and a W-Ni-Fe alloy 

• Initial results show that ductile phases 

contribute significantly to increasing 

fracture resistance 

• Sophisticated crack-bridging models are 

being developed to treat crack growth in 

brittle matrix composites and design high-

strength, high-ductility plasma facing 

components for fusion 
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Other Ductile-phase Toughened Alloys 

P-d curves normalized to yield Py and dy at a/W = 0.5 

KJm & KJ0.8m 

Monolithic W 

Very high initiation (no 

significant crack growth) 
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• 90-97 wt%W:NiFe alloys have very high initiation RT toughness, ultra-

stable crack growth & good tensile strength and ductility 

• Weak to modest dependence on W content 

• Toughening from crack wake bridging & process zone plasticity 
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Development of new Fe-He potential and 

equation of state 
• fitted to both energies and forces of relaxed and unrelaxed defect 

configurations obtained from VASP ab initio calculations for a range of 

He and He/vacancy defects, up to He3V 
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• results indicate tetrahedral site is most stable for He, 

required addition of a 3-body term to the typical 

embedded atom potential 

 

• potential used in MD to determine P-V 

behavior of He in bubbles, results used 

to revise previous "hard sphere" 

equation of state for He 
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MD simulations used to investigate dislocation-

defect interactions 

Fe strengthening due to localized obstacles 

• fundamental plastic behavior of Fe and W, dislocation structure and 

mobility 

• strengthening and hardening of structural materials due to radiation-

induced defects 

• primary objectives are: 

─ elucidate atomistic reactions 

responsible for hardening 

─ provide data for coarser scale 

elasticity and rate theory 

based predictions 

─ provide direct verification with 

specially designed 

experiments.  
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Master model framework  to track generation, 

transport, fate, and consequences of He 

Matrix transport of He by various mechanisms and partitioning to 

sub-region sinks controlled by vacancy and SIA defects,  matrix 

properties and trap-sink microstructures  

 - Nucleation and growth of matrix cavities 

Generate mobile He by transmutation and emission from traps 
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"Fuzz" formation in W plasma-facing material 

Helium on Tungsten: 0–1.5 µs
(1 1 1) surface; Γ = 4.0⇥1025 m−2 s−1

• Raised portions

(red/yellow/white) are

“pushed up” by helium

bubbles

• Bubbles typically vent

non-destructively and

may “heal”

• Still too low a fluence to

see significant bursting

events or tendrils larger

than ⇡ 2 nm

 Atomistic investigations of unit mechanisms that contribute to surface 

roughening in tungsten exposed to low-energy He, a possible 

precursor to fuzz formation. 

"Loop punching" 

"Trap mutation" 

Large-scale MD simulation, 1.5 ms, 

W (111) surface, fHe=4x1025 He/m2/s 

Surface morphology: red, yellow, and white 

are surface regions elevated to different 

distances by underlying He bubbles   
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Crystal plasticity model for single crystal W 

informed by atomistic calculations 

- Very successful prediction of yield strength. 

- Working towards an extension of this modeling to W-

Re, polycrystalline systems. 

Atomistic calculations of 

non-Schmid effects 
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Multiscale, multiphysics mechanical design of 

fusion reactor components 
Thermo-elastic 

analysis & shape 

optimization: ~2-5 

MDOF 

Visco-plastic model 

of critical region 

(CR) ~0.5 MDOF 

Crystal Plasticity 

of Macro-RVE 

~0.1 MDOF 

DD simulation 

of micro-RVE 

~10K DOF 

3D Elasto-plastic 

fracture mechanics 

of critical flaw 
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Summary 

• Primary materials challenges for successful fusion energy include: (1) 

developing structural materials with suitably long lifetimes, (2) obtaining a 

plasma-facing material with sufficient ductility and low tritium retention, 

and (3) verifying the performance of functional materials 

• Key computational results include development of: 

─ a new He-Fe interatomic potential and equation of state for atomistic simulations of 

helium effects in irradiated steels 

─ a detailed kinetic model describing the behavior of helium and its use to predict 

swelling and embrittlement in FM steels and their ODS variants 

─ successful development of continuum and discrete finite element damage models 

of SiC joints 

─ integrated computational approach for investigating near-surface mechanisms 

responsible for “fuzz” formation on W surfaces 

─ atomistically informed model for crystal plasticity of W 

─ integrated models for design of fusion reactor components 
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Summary, cont. 

• Key experimental results and insights include: 

─ use of dual ion, spallation, and neutron irradiation with in situ implantation of He 

demonstrates a strong correlation between He/dpa ratio and both swelling and 

mechanical properties, swelling is reduced in ODS relative to conventional FM 

steels 

─ ODS and CNA variants exhibit high strength and longer creep lifetimes than 

conventional FM steels 

─ successful use of friction stir welding on ODS and FM steel components 

─ high-dose neutron irradiation of advanced nuclear grade SiC demonstrate limited 

effects on high-temperature strength with only modest swelling and reduction in 

thermal conductivity;  

─ impact of He on SiC microstructure observed, impact on mechanical properties is 

being assessed;  

─ good progress in development of radiation-resistant joints for SiC composites 

─ ductility of W and alloys such as W-Re remains problematic, possible ductile-

phase toughening being explored 

─ progress in mechanistic understanding of "fuzz" formation on W PFC, approach to 

mitigation not clear 

• Need for a fusion-relevant neutron source remains a high priority to 

enable materials qualification for machines beyond ITER 

 

 


