
Progress in first-principles simulation of SOL plasma turbulence 
and neutral atom dynamics with the GBS code (P. Ricci et al.) 

• Reached the capability to perform first-principles full-size 
simulations and analysis of turbulence in SOL, in diverted geometry, 
with kinetic neutrals, coupled with closed flux surface region  

• Obtained first-principles scaling of 
SOL width in limited configurations 

 

• In agreement with ITPA multi-
machine database 
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Introduction

I In the tokamak SOL, magnetic field lines

intersect the walls of the fusion device

I Heat and particles flow along magnetic field lines

and are exhausted to the vessel

I Turbulence amplitude and size comparable to

steady-state values

I Neutral particles interact with the plasma

The Global Braginskii Solver (GBS) code:

a 3D, flux-driven, global turbulence code in

limited geometry used to study plasma

turbulence in the SOL

[Ricci et al., PPCF 2012; Halpern et al., JCP 2016]

I GBS solves 3D fluid equations for electrons and ions, Poisson’s and Ampere’s equations, and a

kinetic equation for neutral atoms.

The Global Braginskii Solver (GBS) code
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I Equations implemented in GBS, a flux-driven plasma turbulence code with limited geometry to study

SOL heat and particle transport

I System completed with first-principles boundary conditions applicable at the magnetic pre-sheath

entrance where the magnetic field lines intersect the limiter [Loizu et al., PoP 2012]

I Parallelized using domain decomposition (MPI and OpenMP), excellent parallel scalability up to

⇠ 10000 cores

I Gradients and curvature discretized using finite differences, Poisson Brackets using Arakawa scheme,

integration in time using Runge Kutta method

I Code fully verified using method of manufactured solutions [Riva et al., PoP 2014]

I Note: L? ! ⇢s, Lk ! R0, t ! R0/ cs,⌫= ne2R0/ (miσkcs) normalization

The Poisson and Ampere equations
I Generalized Poisson equation, r · (nr ? φ) = ⌦− ⌧r 2
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I Stencil based parallel multigrid implemented in GBS

I The elliptic equations are separable in the parallel direction leading to independent 2D solutions for

each perpendicular plane

The kinetic neutral atoms equation
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I Method of characteristics to obtain the formal solution of fn [Wersal et al., NF 2015]

I Two assumptions,⌧neutral losses < ⌧turbulence and λmfp, neutrals ⌧ Lk,plasma, leading to a 2D steady state

system for each perpendicular plane

I Linear integral equation for neutral density obtained by integrating fn over ~v

I Spatial discretization leading to a linear system of equations
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I This system is solved for neutral density, nn, and neutral particle flux at the boundaries, Γout, with the

threaded LAPACK solver.

Achievements of GBS

I Characterization of non-linear turbulent

regimes in the SOL [Mosetto et al., PoP 2015]

I SOL width scaling as a function of

dimensionless / engineering plasma parameters

[Halpern et al., PPCF 2016]

I Origin and nature of intrinsic toroidal plasma

rotation in the SOL [Loizu et al., PoP 2014]

I Mechanisms regulating SOL equilibrium

electrostatic potential [Loizu et al., PPCF

2013]
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Plasma shaping effects on SOL turbulence

I Fully-turbulent non-linear simulations with same physical parameters, in different magnetic

geometries [Riva et al., PPCF, submitted]
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I Mitigation of turbulence by ∆ 0, , and negative δ; enhancement of turbulence by positive δ

I Good agreement between non-linear simulations and Gradient Removal theory [Ricci et al., PoP

2013]
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(1.8, 0.3) 23 ± 1 26.8 43 ± 3 36.8

I Linear scan over and δ allows to

predict the SOL width for non-circular

magnetic geometries

I It is possible to generalize the

analytical first-principle Lp scaling to

include shaping effects
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Simulation of TCV SOL

I GBS simulation of TCV discharge # 49170

I Full size simulation with realistic TCV input parameters

I Simulation parameters at the LCFS given by flush-mounted

Langmuir probes

I Comparison with infrared imagining of heat flux [Nespoli et

al., JNM 2015]

I Double scale length in heat flux profile as in TCV

measurements

I Good agreement for what concerns the scale

lengths

I Heat flux fall-off in the near SOL smaller with

respect to experiments

I Non ambipolar current at the limiter observed in

near SOL as in the experiment

Simulation with neutral atoms and closed flux surface region

I Self-consistent GBS simulations with neutral dynamics that include closed flux surface region

I Neutral density peaks around the limiter due to recycling and ionization follows plasma fluctuations

I SOL quasi-steady state balance in the electron temperature

equation

I The perpendicular drifts (S) and the neutral interaction terms

(N) are balanced by the parallel advection (A) and the

parallel diffusion (D) [Wersal et al., NF 2015]
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Summary and Outlook

I GBS is a tool to carry out SOL turbulence simulations of medium size tokamaks

I Recent developments concern the implementation of shaping effects, neutral atom dynamics, the

open-closed field lines interface, and validation agains TCV measurements

I A more flexible algorithm to simulate diverted SOL is being implemented
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Simulation of TCV SOL

I GBS simulation of TCV discharge # 49170

I Full size simulation with realistic TCV input parameters

I Simulation parameters at the LCFS given by flush-mounted

Langmuir probes

I Comparison with infrared imagining of heat flux [Nespoli et

al., JNM 2015]
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measurements

I Good agreement for what concerns the scale

lengths

I Heat flux fall-off in the near SOL smaller with

respect to experiments

I Non ambipolar current at the limiter observed in

near SOL as in the experiment

Simulation with neutral atoms and closed flux surface region

I Self-consistent GBS simulations with neutral dynamics that include closed flux surface region

I Neutral density peaks around the limiter due to recycling and ionization follows plasma fluctuations

I SOL quasi-steady state balance in the electron temperature

equation

I The perpendicular drifts (S) and the neutral interaction terms

(N) are balanced by the parallel advection (A) and the

parallel diffusion (D) [Wersal et al., NF 2015]

0 200 400 600 800
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

y

A
D
N
S

Summary and Outlook

I GBS is a tool to carry out SOL turbulence simulations of medium size tokamaks
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I A more flexible algorithm to simulate diverted SOL is being implemented
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