

Contribution ID: 386

Type: Poster

TH/P2-23: Turbulent Transport due to Kinetic Ballooning Modes in High-Beta Toroidal Plasmas

Tuesday, 9 October 2012 14:00 (4h 45m)

Turbulent transport in high-beta toroidal plasmas is investigated by means of a newly developed simulation code solving electromagnetic gyrokinetic equations combined with gyro-fluid equations for electrons. The new code allows simulations of turbulent transport at high-beta with smaller computational cost and less numerical difficulty than solving gyrokinetic equations for both electrons and ions which have disparate spatio-temporal scales. The code is applicable to a model configuration of Large Helical Device (LHD) experiments as well as tokamaks, and linear calculations show that kinetic ballooning modes (KBMs) are destabilized at high-beta. A nonlinear simulation for a tokamak plasma shows that heat transport due to KBM at high-beta (beta=2%) is significantly larger than that due to ion temperature gradient mode (ITG) driven turbulence at zero beta because of high KBM growth rate and weak zonal flow.

Country or International Organization of Primary Author

Japan

Primary author: Mr ISHIZAWA, Akihiro (Japan)

Co-authors: Prof. SUGAMA, Hideo (National Institute for Fusion Science); Prof. NAKAJIMA, Noriyoshi (National Institute for Fusion Science); Dr MAEYAMA, Shinya (Tokyo Institute of Technology); Prof. WATANABE, Tomohiko (National Institute for Fusion Science)

Presenter: Mr ISHIZAWA, Akihiro (Japan)

Session Classification: Poster: P2

Track Classification: THC - Magnetic Confinement Theory and Modelling: Confinement