24th IAEA Fusion Energy Conference - IAEA CN-197

Contribution ID: 683 Type: Overview Poster

OV/4-3: Energetic Particle Instabilities in Fusion Plasmas

Monday, 8 October 2012 14:00 (4h 45m)

A remarkable progress was made in diagnosing energetic particle instabilities on present-day machines and in establishing a theoretical framework for describing them. This overview presents a point-by-point comparison between the much improved diagnostics of Alfvén Eigenmodes (AEs) and modelling tools developed world-wide, and outlines progress in interpreting the observed phenomena. A multi-machine comparison is presented giving a fair idea on the performance of both diagnostics and modelling tools for different plasma conditions. On JET equipped with 2D gamma-ray camera and interferometry, core-localised TAEs were detected causing redistribution of fast ions from inside the q=1 radius to outer plasma region followed by monster sawtooth crashes. TAE modelling using the HAGIS code showed a good agreement with the measured re-distribution and its effect on sawteeth. On DIII-D and AUG, ECE-imaging provides detailed measurements of amplitude and structure of AEs. A successful modelling was performed using the ORBIT code for reproducing the anomalously flat beam profiles on DIII-D. In AUG, a monitoring of the fast-ion redistribution and losses with an array of scintillators and fast-ion D-alpha spectroscopy has shown how a radial chain of overlapping AEs enables the transport of fast-ions from the core to the fast-ion loss detector. On NSTX, beam-driven AEs were observed in the form of "avalanches" consisting of coupled modes with strong frequency chirp. These modes caused ~10% drops in the neutron rate explained by effects of decrease in the beam energy and beam losses resulting from the interaction with TAE. A nonlinear model for near-threshold beam-driven instabilities has successfully encompassed many of the temporal characteristics of AEs seen in experiments. A steady-state nonlinear mode saturation and bursts of mode activity were found to be associated with both the strength and type of relaxation process in the phase-space region surrounding the resonance of the distribution function. An extension of the model to modes with a frequency sweep comparable to the starting frequency opened the opportunity for understanding the chirping modes in DIII-D, MAST, NSTX, START, and LHD. Finally, this presentation will outline expectations for ITER based on our present knowledge. This work was funded by the RCUK Energy programme and EURATOM.

Country or International Organization of Primary Author

UK

Primary author: Mr SHARAPOV, Sergei (UK)

Presenter: Mr SHARAPOV, Sergei (UK)

Session Classification: Overview Posters